本书介绍了科学计算中基本的数值计算方法理论、算法与程序,内容简洁,重点突出,既有严谨的基础理论,又包含丰富的计算方法和程序块。
本书主要内容包括线性方程组的数值解法、非线性方程(组)的数值解法、多项式插值方法、数值微分与数值积分、常微分方程初值问题的数值解法等计算方法的核心部分。每一类基本问题给出Matlab语言编写的结构化程序块,供读者研读与模仿。另外,本书还通过小结与提高部分给出进一步学习与思考的内容,并注明相应的出处,为读者深入学习指明方向。
本书可作为高等学校理工科各专业本科生数值计算课程少学时(24~48学时)的教材或教学参考书,也可供工程技术人员参考。
- 前辅文
- 第一章 绪论
- §1.1 科学计算的魅力
- §1.2 科学计算的内容
- §1.3 算法的评价与误差
- 1.3.1 计算复杂性与收敛速度
- 1.3.2 误差
- 1.3.3 减少误差的途径
- §1.4 小结
- 习题一
- 第二章 线性方程组的数值解法
- §2.1 Gauss消去法
- 2.1.1 三角形方程组的解法
- 2.1.2 Gauss消去法
- 2.1.3 列主元Gauss消去法
- §2.2 矩阵分解法
- 2.2.1 矩阵三角分解法
- 2.2.2 对称正定矩阵分解法
- §2.3 向量范数与矩阵范数
- §2.4 经典迭代法
- 2.4.1 Jacobi迭代法
- 2.4.2 Gauss-Seidel迭代法
- 2.4.3 一般迭代法的收敛性
- §2.5 小结与提高
- 习题二
- 思考题与编程计算题
- 第三章 非线性方程(组)的数值解法
- §3.1 二分法
- §3.2 不动点迭代法
- 3.2.1 不动点与不动点迭代法
- 3.2.2 不动点迭代法的收敛性
- §3.3 Newton法
- 3.3.1 Newton迭代公式的构造
- 3.3.2 Newton法的收敛性与收敛速度
- §3.4 割线法
- §3.5 非线性方程组的迭代法
- 3.5.1 非线性方程组
- 3.5.2 求解非线性方程组的Newton法
- §3.6 小结与提高
- 习题三
- 思考题与编程计算题
- 第四章 多项式插值方法
- §4.1 引言
- §4.2 Lagrange插值多项式
- 4.2.1 线性插值与二次插值
- 4.2.2 Lagrange捕值多项式
- 4.2.3 捕值余项与误差估计
- §4.3 Newton均差插值多项式
- 4.3.1 均差的定义与性质
- 4.3.2 Newton均差插值多项式
- §4.4 分段低次插值
- 4.4.1 Runge现象
- 4.4.2 分段低次插值
- §4.5 小结与提高
- 习题四
- 思考题与编程计算题
- 第五章 数值微分与数值积分
- §5.1 数值微分
- 5.1.1 差商型求导公式
- 5.1.2 插值型求导公式
- §5.2 数值积分
- 5.2.1 插值型求积公式
- 5.2.2 复化求积公式
- 5.2.3 Romberg积分法
- §5.3 小结与提高
- 习题五
- 思考题与编程计算题
- 第六章 常微分方程初值问题的数值解法
- §6.1 Euler法
- 6.1.1 引言
- 6.1.2 Euler公式后退Euler公式与梯形公式
- 6.1.3 改进Euler公式
- 6.1.4 计算公式的误差分析
- §6.2 Runge-Kutta法
- 6.2.1 Runge-Kutta法的主要思想
- 6.2.2 二阶显式R-K公式
- 6.2.3 四阶显式R-K公式
- 6.2.4 Matlab ODE函数简介
- §6.3 小结与提高
- 习题六
- 思考题与编程计算题
- 第七章 最小二乘问题
- §7.1 线性最小二乘问题
- §7.2 非线性最小二乘问题
- 7.2.1 Gauss-Newton法
- 7.2.2 LM法
- §7.3 小结与提高
- 习题七
- 思考题与编程计算题
- 第八章 矩阵特征值与特征向量的计算
- §8.1 引言
- §8.2 乘幂法
- §8.3 逆幂法
- §8.4 小结与提高
- 习题八
- 思考题与编程计算题
- 参考文献