顶部
收藏

极值Kähler度量引论(影印版)


作者:
Gábor Székelyhidi
定价:
99.00元
ISBN:
978-7-04-059304-4
版面字数:
350.000千字
开本:
特殊
全书页数:
暂无
装帧形式:
精装
重点项目:
暂无
出版时间:
2023-03-24
读者对象:
学术著作
一级分类:
自然科学
二级分类:
数学与统计
三级分类:
分析

暂无
  • 前辅文
  • Chapter 1. K¨ahler Geometry
    • 1.1. Complex manifolds
    • 1.2. Almost complex structures
    • 1.3. Hermitian and K¨ahler metrics
    • 1.4. Covariant derivatives and curvature
    • 1.5. Vector bundles
    • 1.6. Connections and curvature of line bundles
    • 1.7. Line bundles and projective embeddings
  • Chapter 2. Analytic Preliminaries
    • 2.1. Harmonic functions on Rn
    • 2.2. Elliptic differential operators
    • 2.3. Schauder estimates
    • 2.4. The Laplace operator on K¨ahler manifolds
  • Chapter 3. K¨ahler-Einstein Metrics
    • 3.1. The strategy
    • 3.2. The C0- and C2-estimates
    • 3.3. The C3- and higher-order estimates
    • 3.4. The case c1(M) = 0
    • 3.5. The case c1(M) >0
    • 3.6. Futher reading
  • Chapter 4. Extremal Metrics
    • 4.1. The Calabi functional
    • 4.2. Holomorphic vector fields and the Futaki invariant
    • 4.3. The Mabuchi functional and geodesics
    • 4.4. Extremal metrics on a ruled surface
    • 4.5. Toric manifolds
  • Chapter 5. Moment Maps and Geometric Invariant Theory
    • 5.1. Moment maps
    • 5.2. Geometric invariant theory (GIT)
    • 5.3. The Hilbert-Mumford criterion
    • 5.4. The Kempf-Ness theorem
    • 5.5. Relative stability
  • Chapter 6. K-stability
    • 6.1. The scalar curvature as a moment map
    • 6.2. The Hilbert polynomial and flat limits
    • 6.3. Test-configurations and K-stability
    • 6.4. Automorphisms and relative K-stability
    • 6.5. Relative K-stability of a ruled surface
    • 6.6. Filtrations
    • 6.7. Toric varieties
  • Chapter 7. The Bergman Kernel
    • 7.1. The Bergman kernel
    • 7.2. Proof of the asymptotic expansion
    • 7.3. The equivariant Bergman kernel
    • 7.4. The algebraic and geometric Futaki invariants
    • 7.5. Lower bounds on the Calabi functional
    • 7.6. The partial C0-estimate
  • Chapter 8. CscK Metrics on Blow-ups
    • 8.1. The basic strategy
    • 8.2. Analysis in weighted spaces
    • 8.3. Solving the non-linear equation when n > 2
    • 8.4. The case when n = 2
    • 8.5. The case when M admits holomorphic vector fields
    • 8.6. K-stability of cscK manifolds
  • Bibliography
  • Index

相关图书