顶部
收藏

复变量导引(影印版)


作者:
Steven G. Krantz
定价:
99.00元
ISBN:
978-7-04-057022-9
版面字数:
350.000千字
开本:
16开
全书页数:
暂无
装帧形式:
精装
重点项目:
暂无
出版时间:
2022-02-28
读者对象:
学术著作
一级分类:
自然科学
二级分类:
数学与统计
三级分类:
分析

暂无
  • 前辅文
  • 1 The Complex Plane
    • 1.1 Complex Arithmetic
      • 1.1.1 The Real Numbers
      • 1.1.2 The Complex Numbers
      • 1.1.3 Complex Conjugate
      • 1.1.4 Modulus of a Complex Number
      • 1.1.5 The Topology of the Complex Plane
      • 1.1.6 The Complex Numbers as a Field
      • 1.1.7 The Fundamental Theorem of Algebra
    • 1.2 The Exponential and Applications
      • 1.2.1 The Exponential Function
      • 1.2.2 The Exponential Using Power Series
      • 1.2.3 Laws of Exponentiation
      • 1.2.4 Polar Form of a Complex Number
      • 1.2.5 Roots of Complex Numbers
      • 1.2.6 The Argument of a Complex Number
      • 1.2.7 Fundamental Inequalities
    • 1.3 Holomorphic Functions
      • 1.3.1 ContinuouslyDifferentiable and Ck Functions
      • 1.3.2 The Cauchy-Riemann Equations
      • 1.3.3 Derivatives
      • 1.3.4 Definition of Holomorphic Function
      • 1.3.5 The Complex Derivative
      • 1.3.6 Alternative Terminology for Holomorphic Functions
    • 1.4 Holomorphic and Harmonic Functions
      • 1.4.1 Harmonic Functions
      • 1.4.2 How They are Related
  • 2 Complex Line Integrals
    • 2.1 Real and Complex Line Integrals
      • 2.1.1 Curves
      • 2.1.2 Closed Curves
      • 2.1.3 Differentiable and Ck Curves
      • 2.1.4 Integrals on Curves
      • 2.1.5 The Fundamental Theorem of Calculus along Curves
      • 2.1.6 The Complex Line Integral
      • 2.1.7 Properties of Integrals
    • 2.2 Complex Differentiability and Conformality
      • 2.2.1 Limits
      • 2.2.2 Holomorphicity and the Complex Derivative
      • 2.2.3 Conformality
    • 2.3 The Cauchy Integral Formula and Theorem
      • 2.3.1 The Cauchy Integral Theorem, Basic Form
      • 2.3.2 The Cauchy Integral Formula
      • 2.3.3 More General Forms of the Cauchy Theorems
      • 2.3.4 Deformability of Curves
    • 2.4 The Limitations of the Cauchy Formula
  • 3 Applications of the Cauchy Theory
    • 3.1 The Derivatives of a Holomorphic Function
      • 3.1.1 A Formula for the Derivative
      • 3.1.2 The Cauchy Estimates
      • 3.1.3 Entire Functions and Liouville’s Theorem
      • 3.1.4 The Fundamental Theorem of Algebra
      • 3.1.5 Sequences of Holomorphic Functions and their Derivatives
      • 3.1.6 The Power Series Representation of a Holomorphic Function
    • 3.2 The Zeros of a Holomorphic Function
      • 3.2.1 The Zero Set of a Holomorphic Function
      • 3.2.2 Discreteness of the Zeros of a Holomorphic Function
      • 3.2.3 Discrete Sets and Zero Sets
      • 3.2.4 Uniqueness of Analytic Continuation
  • 4 Laurent Series
    • 4.1 Behavior Near an Isolated Singularity
      • 4.1.1 Isolated Singularities
      • 4.1.2 A Holomorphic Function on a Punctured Domain
      • 4.1.3 Classification of Singularities
      • 4.1.4 Removable Singularities, Poles, and Essential Singularities
      • 4.1.5 The Riemann Removable Singularities Theorem
      • 4.1.6 The Casorati-Weierstrass Theorem
    • 4.2 Expansion around Singular Points
      • 4.2.1 Laurent Series
      • 4.2.2 Convergence of a Doubly Infinite Series
      • 4.2.3 Annulus of Convergence
      • 4.2.4 Uniqueness of the Laurent Expansion
      • 4.2.5 The Cauchy Integral Formula for an Annulus
      • 4.2.6 Existence of Laurent Expansions
      • 4.2.7 Holomorphic Functions with Isolated Singularities
      • 4.2.8 Classification of Singularities in Terms of Laurent Series
    • 4.3 Examples of Laurent Expansions
      • 4.3.1 Principal Part of a Function
      • 4.3.2 Algorithmfor Calculating the Coefficients of the Laurent Expansion
    • 4.4 The Calculus of Residues
      • 4.4.1 Functions with Multiple Singularities
      • 4.4.2 The Residue Theorem
      • 4.4.3 Residues
      • 4.4.4 The Index orWinding Number of a Curve about a Point
      • 4.4.5 Restatement of the Residue Theorem
      • 4.4.6 Method for Calculating Residues
      • 4.4.7 Summary Charts of Laurent Series and Residues
    • 4.5 Applications to Integrals
      • 4.5.1 The Evaluation of Definite Integrals
      • 4.5.2 A Basic Example of the Indefinite Integral
      • 4.5.3 Complexification of the Integrand
      • 4.5.4 An Example with a More Subtle Choice of Contour
      • 4.5.5 Making the Spurious Part of the Integral Disappear
      • 4.5.6 The Use of the Logarithm
      • 4.5.7 Summing a Series Using Residues
    • 4.6 Singularities at Infinity
      • 4.6.1 Meromorphic Functions
      • 4.6.2 Definition of Meromorphic Function
      • 4.6.3 Examples of Meromorphic Functions
      • 4.6.4 Meromorphic Functions with InfinitelyMany Poles
      • 4.6.5 Singularities at Infinity
      • 4.6.6 The Laurent Expansion at Infinity
      • 4.6.7 Meromorphic at Infinity
      • 4.6.8 Meromorphic Functions in the Extended Plane
  • 5 The Argument Principle
    • 5.1 Counting Zeros and Poles
      • 5.1.1 Local Geometric Behavior of a Holomorphic Function
      • 5.1.2 Locating the Zeros of a Holomorphic Function
      • 5.1.3 Zero of Order n
      • 5.1.4 Counting the Zeros of a Holomorphic Function
      • 5.1.5 The Argument Principle
      • 5.1.6 Location of Poles
      • 5.1.7 The Argument Principle for Meromorphic Functions
    • 5.2 The Local Geometry of Holomorphic Functions
      • 5.2.1 The Open Mapping Theorem
    • 5.3 Further Results
      • 5.3.1 Rouch´e’s Theorem
      • 5.3.2 Typical Application of Rouch´e’s Theorem
      • 5.3.3 Rouch´e’s Theorem and the Fundamental Theorem of Algebra
      • 5.3.4 Hurwitz’s Theorem
    • 5.4 The Maximum Principle
      • 5.4.1 The Maximum Modulus Principle
      • 5.4.2 Boundary Maximum Modulus Theorem
      • 5.4.3 The Minimum Principle
      • 5.4.4 The Maximum Principle on an Unbounded Domain
    • 5.5 The Schwarz Lemma
      • 5.5.1 Schwarz’s Lemma
      • 5.5.2 The Schwarz-Pick Lemma
  • 6 The Geometric Theory.
    • 6.1 The Idea of a Conformal Mapping
      • 6.1.1 Conformal Mappings
      • 6.1.2 Conformal Self-Maps of the Plane
    • 6.2 Linear Fractional Transformations
      • 6.2.1 Linear Fractional Mappings
      • 6.2.2 The Topology of the Extended Plane
      • 6.2.3 The Riemann Sphere
      • 6.2.4 Conformal Self-Maps of the Riemann Sphere
      • 6.2.5 The Cayley Transform
      • 6.2.6 Generalized Circles and Lines
      • 6.2.7 The Cayley Transform Revisited
      • 6.2.8 Summary Chart of Linear Fractional Transformations
    • 6.3 The Riemann Mapping Theorem
      • 6.3.1 The Concept of Homeomorphism
      • 6.3.2 The Riemann Mapping Theorem
      • 6.3.3 The Riemann Mapping Theorem: Second Formulation
    • 6.4 Conformal Mappings of Annuli
      • 6.4.1 A Riemann Mapping Theorem for Annuli
      • 6.4.2 Conformal Equivalence of Annuli
      • 6.4.3 Classification of Planar Domains
  • 7 Harmonic Functions
    • 7.1 Basic Properties of Harmonic Functions
      • 7.1.1 The Laplace Equation
      • 7.1.2 Definition of Harmonic Function
      • 7.1.3 Real- and Complex-Valued Harmonic Functions
      • 7.1.4 Harmonic Functions as the Real Parts of Holomorphic Functions
      • 7.1.5 Smoothness of Harmonic Functions
    • 7.2 The Maximum Principle and the Mean Value Property
      • 7.2.1 The Maximum Principle for Harmonic Functions
      • 7.2.2 The Minimum Principle for Harmonic Functions
      • 7.2.3 The Boundary Maximum and Minimum Principles
      • 7.2.4 The Mean Value Property
      • 7.2.5 Boundary Uniqueness for Harmonic Functions
    • 7.3 The Poisson Integral Formula
      • 7.3.1 The Poisson Integral
      • 7.3.2 The Poisson Kernel
      • 7.3.3 The Dirichlet Problem
      • 7.3.4 The Solution of the Dirichlet Problem on the Disc
      • 7.3.5 The Dirichlet Problem on a General Disc
    • 7.4 Regularity of Harmonic Functions
      • 7.4.1 The Mean Value Property on Circles
      • 7.4.2 The Limit of a Sequence of Harmonic Functions
    • 7.5 The Schwarz Reflection Principle
      • 7.5.1 Reflection of Harmonic Functions
      • 7.5.2 Schwarz Reflection Principle for Harmonic Functions
      • 7.5.3 The Schwarz Reflection Principle for Holomorphic Functions
      • 7.5.4 More General Versions of the Schwarz Reflection Principle
    • 7.6 Harnack’s Principle
      • 7.6.1 The Harnack Inequality
      • 7.6.2 Harnack’s Principle
    • 7.7 The Dirichlet Problem
      • 7.7.1 The Dirichlet Problem
      • 7.7.2 Conditions for Solving the Dirichlet Problem
      • 7.7.3 Motivation for Subharmonic Functions
      • 7.7.4 Definition of Subharmonic Function
      • 7.7.5 Other Characterizations of Subharmonic Functions
      • 7.7.6 The Maximum Principle
      • 7.7.7 Lack of A Minimum Principle
      • 7.7.8 Basic Properties of Subharmonic Functions
      • 7.7.9 The Concept of a Barrier
    • 7.8 The General Solution of the Dirichlet Problem
      • 7.8.1 Enunciation of the Solution of the Dirichlet Problem
  • 8 Infinite Series and Products
    • 8.1 Basic Concepts
      • 8.1.1 Uniform Convergence of a Sequence
      • 8.1.2 The Cauchy Condition for a Sequence of Functions
      • 8.1.3 Normal Convergence of a Sequence
      • 8.1.4 Normal Convergence of a Series
      • 8.1.5 The Cauchy Condition for a Series
      • 8.1.6 The Concept of an Infinite Product
      • 8.1.7 Infinite Products of Scalars
      • 8.1.8 Partial Products
      • 8.1.9 Convergence of an Infinite Product
      • 8.1.10 The Value of an Infinite Product
      • 8.1.11 Products That Are Disallowed
      • 8.1.12 Condition for Convergence of an Infinite Product
      • 8.1.13 Infinite Products of Holomorphic Functions
      • 8.1.14 Vanishing of an Infinite Product
      • 8.1.15 Uniform Convergence of an Infinite Product of Functions
      • 8.1.16 Condition for the Uniform Convergence of an Infinite Product of Functions
    • 8.2 The Weierstrass Factorization Theorem
      • 8.2.1 Prologue
      • 8.2.2 Weierstrass Factors
      • 8.2.3 Convergence of theWeierstrass Product
      • 8.2.4 Existence of an Entire Function with Prescribed Zeros
      • 8.2.5 TheWeierstrass Factorization Theorem
    • 8.3 Weierstrass and Mittag-Leffler Theorems
      • 8.3.1 The Concept of Weierstrass’s Theorem
      • 8.3.2 Weierstrass’s Theorem
      • 8.3.3 Construction of a Discrete Set
      • 8.3.4 Domains of Existence for Holomorphic Functions
      • 8.3.5 The Field Generated by the Ring of Holomorphic Functions
      • 8.3.6 The Mittag-Leffler Theorem
      • 8.3.7 Prescribing Principal Parts
    • 8.4 Normal Families
      • 8.4.1 Normal Convergence
      • 8.4.2 Normal Families
      • 8.4.3 Montel’s Theorem, First Version
      • 8.4.4 Montel’s Theorem, Second Version
      • 8.4.5 Examples of Normal Families
  • 9 Analytic Continuation
    • 9.1 Definition of an Analytic Function Element
      • 9.1.1 Continuation of Holomorphic Functions
      • 9.1.2 Examples of Analytic Continuation
      • 9.1.3 Function Elements
      • 9.1.4 Direct Analytic Continuation
      • 9.1.5 Analytic Continuation of a Function
      • 9.1.6 Global Analytic Functions
      • 9.1.7 An Example of Analytic Continuation
    • 9.2 Analytic Continuation along a Curve
      • 9.2.1 Continuation on a Curve
      • 9.2.2 Uniqueness of Continuation along a Curve
    • 9.3 The Monodromy Theorem
      • 9.3.1 Unambiguity of Analytic Continuation
      • 9.3.2 The Concept of Homotopy
      • 9.3.3 Fixed Endpoint Homotopy
      • 9.3.4 Unrestricted Continuation
      • 9.3.5 The Monodromy Theorem
      • 9.3.6 Monodromy and Globally Defined Analytic Functions
    • 9.4 The Idea of a Riemann Surface
      • 9.4.1 What is a Riemann Surface?
      • 9.4.2 Examples of Riemann Surfaces
      • 9.4.3 The Riemann Surface for the Square Root Function
      • 9.4.4 Holomorphic Functions on a Riemann Surface
      • 9.4.5 The Riemann Surface for the Logarithm
      • 9.4.6 Riemann Surfaces in General
    • 9.5 Picard’s Theorems
      • 9.5.1 Value Distribution for Entire Functions
      • 9.5.2 Picard’s Little Theorem
      • 9.5.3 Picard’s Great Theorem
      • 9.5.4 The Little Theorem, the Great Theorem, and the Casorati-Weierstrass Theorem
  • Glossary of Terms from Complex Variable Theory and Analysis
  • Bibliography
  • Index
  • About the Author

相关图书