登录
注册
书目下载
联系我们
移动端
扫码关注-登录移动端
帮助中心
高等教育出版社产品信息检索系统
图书产品
数字化产品
期刊产品
会议信息
电子书
线上书展
顶部
首页
图书产品
Fourier分析与小波分析引论(影印版)
收藏
Fourier分析与小波分析引论(影印版)
样章
作者:
Mark A. Pinsky
定价:
169.00元
ISBN:
978-7-04-063097-8
版面字数:
630.00千字
开本:
特殊
全书页数:
暂无
装帧形式:
精装
重点项目:
暂无
出版时间:
2025-02-13
物料号:
63097-00
读者对象:
学术著作
一级分类:
自然科学
二级分类:
数学与统计
三级分类:
分析
购买:
样章阅读
图书详情
|
图书目录
暂无
前辅文
1 FOURIER SERIES ON THE CIRCLE
1.1 Motivation and Heuristics
1.1.1 Motivation from Physics
1.1.1.1 The Vibrating String
1.1.1.2 Heat Flow in Solids
1.1.2 Absolutely Convergent Trigonometric Series
1.1.3 *Examples of Factorial and Bessel Functions
1.1.4 Poisson Kernel Example
1.1.5 *Proof of Laplace's Method
1.1.6 *Nonabsolutely Convergent Trigonometric Series
1.2 Formulation of Fourier Series
1.2.1 Fourier Coefficients and Their Basic Properties
1.2.2 Fourier Series of Finite Measures
1.2.3 *Rates of Decay of Fourier Coefficients
1.2.3.1 Piecewise Smooth Functions
1.2.3.2 Fourier Characterization of Analytic Functions
1.2.4 Sine Integral
1.2.4.1 Other Proofs That Si(∞) = 1
1.2.5 Pointwise Convergence Criteria
1.2.6 *Integration of Fourier Series
1.2.6.1 Convergence of Fourier Series of Measures
1.2.7 Riemann Localization Principle
1.2.8 Gibbs-Wilbraham Phenomenon
1.2.8.1 The General Case
1.3 Fourier Series in L2
1.3.1 Mean Square Approximation—Parseval's Theorem
1.3.2 *Application to the Isoperimetric Inequality
1.3.3 *Rates of Convergence in L2
1.3.3.1 Application to Absolutely-Convergent Fourier Series
1.4 Norm Convergence and SummabiHty
1.4.1 Approximate Identities
1.4.1.1 Almost-Everywhere Convergence of the Abel Means
1.4.2 Summability Matrices
1.4.3 Fejér Means of a Fourier Series
1.4.3.1 Wiener's Closure Theorem on the Circle
1.4.4 *Equidistribution Modulo One
1.4.5 *Hardy's Tauberian Theorem
1.5 Improved Trigonometric Approximation
1.5.1 Rates of Convergence in C(T)
1.5.2 Approximation with Fejér Means
1.5.3 *Jackson's Theorem
1.5.4 *Higher-Order Approximation
1.5.5 *Converse Theorems of Bernstein
1.6 Divergence of Fourier Series
1.6.1 The Example of du Bois-Reymond
1.6.2 Analysis via Lebesgue Constants
1.6.3 Divergence in the Space L1
1.7 *Appendix: Complements on Laplace's Method
1.7.0.1 First Variation on the Theme-Gaussian Approximation
1.7.0.2 Second Variation on the Theme-Improved Error Estimate
1.7.1 *Application to Bessel Functions
1.7.2 *The Local Limit Theorem of DeMoivre-Laplace
1.8 Appendix: Proof of the Uniform Boundedness Theorem
1.9 *Appendix: Higher-Order Bessel functions
1.10 Appendix: Cantor's Uniqueness Theorem
2 FOURIER TRANSFORMS ON THE LINE AND SPACE
2.1 Motivation and Heuristics
2.2 Basic Properties of the Fourier Transform
2.2.1 Riemann-Lebesgue Lemma
2.2.2 Approximate Identities and Gaussian Summability
2.2.2.1 Improved Approximate Identities for Pointwise Convergence
2.2.2.2 Application to the Fourier Transform
2.2.2.3 The n-Dimensional Poisson Kernel
2.2.3 Fourier Transforms of Tempered Distributions
2.2.4 *Characterization of the Gaussian Density
2.2.5 *Wiener's Density Theorem
2.3 Fourier Inversion in One Dimension
2.3.1 Dirichlet Kernel and Symmetric Partial Sums
2.3.2 Example of the Indicator Function
2.3.3 Gibbs-Wilbraham Phenomenon
2.3.4 Dini Convergence Theorem
2.3.4.1 Extension to Fourier's Single Integral
2.3.5 Smoothing Operations in R1-Averaging and Summability
2.3.6 Averaging and Weak Convergence
2.3.7 Cesàro Summability
2.3.7.1 Approximation Properties of the Fejér Kernel
2.3.8 Bernstein's Inequality
2.3.9 *One-Sided Fourier Integral Representation
2.3.9.1 Fourier Cosine Transform
2.3.9.2 Fourier Sine Transform
2.3.9.3 Generalized h-Transform
2.4 L2 Theory in Rn
2.4.1 Plancherel's Theorem
2.4.2 *Bernstein's Theorem for Fourier Transforms
2.4.3 The Uncertainty Principle
2.4.3.1 Uncertainty Principle on the Circle
2.4.4 Spectral Analysis of the Fourier Transform
2.4.4.1 Hermite Polynomials
2.4.4.2 Eigenfunction of the Fourier Transform
2.4.4.3 Orthogonality Properties
2.4.4.4 Completeness
2.5 Spherical Fourier Inversion in Rn
2.5.1 Bochner's Approach
2.5.2 Piecewise Smooth Viewpoint
2.5.3 Relations with the Wave Equation
2.5.3.1 The Method of Brandolini and Colzani
2.5.4 Bochner-Riesz Summability
2.5.4.1 A General Theorem on Almost-Everywhere Summability
2.6 Bessel Functions
2.6.1 Fourier Transforms of Radial Functions
2.6.2 L2-Restriction Theorems for the Fourier Transform
2.6.2.1 An Improved Result
2.6.2.2 Limitations on the Range of p
2.7 The Method of Stationary Phase
2.7.1 Statement of the Result
2.7.2 Application to Bessel Functions
2.7.3 Proof of the Method of Stationary Phase
2.7.4 Abel's Lemma
3 FOURIER ANALYSIS IN LP SPACES
3.1 Motivation and Heuristics
3.2 The M. Riesz-Thorin Interpolation Theorem
3.2.0.1 Generalized Young's Inequality
3.2.0.2 The Hausdorff-Young Inequality
3.2.1 Stein's Complex Interpolation Theorem
3.3 The Conjugate Function or Discrete Hilbert Transform
3.3.1 LP Theory of the Conjugate Function
3.3.2 L1 Theory of the Conjugate Function
3.3.2.1 Identification as a Singular Integral
3.4 The Hilbert Transform on R
3.4.1 L2 Theory of the Hilbert Transform
3.4.2 LP Theory of the Hilbert Transform, 1<p<∞
3.4.2.1 Applications to Convergence of Fourier Integrals
3.4.3 L1 Theory of the Hilbert Transform and Extensions
3.4.3.1 Kolmogorov's Inequality for the Hilbert Transform
3.4.4 Application to Singular Integrals with Odd Kernels
3.5 Hardy-Littlewood Maximal Function
3.5.1 Application to the Lebesgue Differentiation Theorem
3.5.2 Application to Radial Convolution Operators
3.5.3 Maximal Inequalities for Spherical Averages
3.6 The Marcinkiewicz Interpolation Theorem
3.7 Calderón-Zygmund Decomposition
3.8 A Class of Singular Integrals
3.9 Properties of Harmonic Functions
3.9.1 General Properties
3.9.2 Representation Theorems in the Disk
3.9.3 Representation Theorems in the Upper Half-Plane
3.9.4 Herglotz/Bochner Theorems and Positive Definite Functions
4 POISSON SUMMATION FORMULA AND MULTIPLE FOURIER SERIES
4.1 Motivation and Heuristics
4.2 The Poisson Summation Formula in R1
4.2.1 Periodization of a Function
4.2.2 Statement and Proof
4.2.3 Shannon Sampling
4.3 Multiple Fourier Series
4.3.1 Basic Ll Theory
4.3.1.1 Pointwise Convergence for Smooth Functions
4.3.1.2 Representation of Spherical Partial Sums
4.3.2 Basic L2 Theory
4.3.3 Restriction Theorems for Fourier Coefficients
4.4 Poisson Summation Formula in Rd
4.4.1 *Simultaneous Nonlocalization
4.5 Application to Lattice Points
4.5.1 Kendall's Mean Square Error
4.5.2 Landau's Asymptotic Formula
4.5.3 Application to Multiple Fourier Series
4.5.3.1 Three-Dimensional Case
4.5.3.2 Higher-Dimensional Case
4.6 Schrödinger Equation and Gauss Sums
4.6.1 Distributions on the Circle
4.6.2 The Schrödinger Equation on the Circle
4.7 Recurrence of Random Walk
5 APPLICATIONS TO PROBABILITY THEORY
5.1 Motivation and Heuristics
5.2 Basic Definitions
5.2.1 The Central Limit Theorem
5.2.1.1 Restatement in Terms of Independent Random Variables
5.3 Extension to Gap Series
5.3.1 Extension to Abel Sums
5.4 Weak Convergence of Measures
5.4.1 An Improved Continuity Theorem
5.4.1.1 Another Proof of Bochner's Theorem
5.5 Convolution Semigroups
5.6 The Berry-Esséen Theorem
5.6.1 Extension to Different Distributions
5.7 The Law of the Iterated Logarithm
6 INTRODUCTION TO WAVELETS
6.1 Motivation and Heuristics
6.1.1 Heuristic Treatment of the Wavelet Transform
6.2 Wavelet Transform
6.2.0.1 Wavelet Characterization of Smoothness
6.3 Haar Wavelet Expansion
6.3.1 Haar Functions and Haar Series
6.3.2 Haar Sums and Dyadic Projections
6.3.3 Completeness of the Haar Functions
6.3.3.1 Haar Series in C0 and Lp Spaces
6.3.3.2 Pointwise Convergence of Haar Series
6.3.4 *Construction of Standard Brownian Motion
6.3.5 *Haar Function Representation of Brownian Motion
6.3.6 *Proof of Continuity
6.3.7 *Lévy's Modulus of Continuity
6.4 Multiresolution Analysis
6.4.1 Orthonormal Systems and Riesz Systems
6.4.2 Scaling Equations and Structure Constants
6.4.3 From Scaling Function to MRA
6.4.3.1 Additional Remarks
6.4.4 Meyer Wavelets
6.4.5 From Scaling Function to Orthonormal Wavelet
6.4.5.1 Direct Proof that V1ΘV0 Is Spanned by {Ψ(t-k)}k∈Z
6.4.5.2 Null Integrability of Wavelets Without Scaling Functions
6.5 Wavelets with Compact Support
6.5.1 From Scaling Filter to Scaling Function
6.5.2 Explicit Construction of Compact Wavelets
6.5.2.1 Daubechies Recipe
6.5.2.2 Hernandez-Weiss Recipe
6.5.3 Smoothness of Wavelets
6.5.3.1 A Negative Result
6.5.4 Cohen's Extension of Theorem 6.5.1
6.6 Convergence Properties of Wavelet Expansions
6.6.1 Wavelet Series in LP Spaces
6.6.1.1 Large Scale Analysis
6.6.1.2 Almost-Everywhere Convergence
6.6.1.3 Convergence at a Preassigned Point
6.6.2 Jackson and Bernstein Approximation Theorems
6.7 Wavelets in Several Variables
6.7.1 Two Important Examples
6.7.1.1 Tensor Product of Wavelets
6.7.2 General Formulation of MRA and Wavelets in Rd
6.7.2.1 Notations for Subgroups and Cosets
6.7.2.2 Riesz Systems and Orthonormal Systems in Rd
6.7.2.3 Scaling Equation and Structure Constants
6.7.2.4 Existence of the Wavelet Set
6.7.2.5 Proof That the Wavelet Set Spans V1ΘV0
6.7.2.6 Cohen's Theorem in Rd
6.7.3 Examples of Wavelets in Rd
References
Notations
Index
相关图书
Banach空间中的单调算子与非线性偏微分方程(影印版)
R. E. Showalter
¥135.00
收藏
Fourier分析初步(Early Fourier Analysis)(影印版)
Hugh L. Montgomery
¥0.00
收藏
Fourier级数和正交多项式(Fourier Series and Orthogonal Polynomials)(影印版)
Dunham Jackson
¥0.00
收藏
Fourier级数(影印版)
Rajendra Bhatia
¥99.00
收藏
Gauss测度(影印版)
Vladimir I. Bogachev
¥169.00
收藏
分形和现代分析引论
马力
¥59.00
收藏
古典分析导引(影印版)
Peter Duren
¥169.00
收藏
基本分析讲义(第一卷) 单变量理论(上册)
李逸
¥79.00
收藏
复分析与Riemann曲面教程(影印版)
Wilhelm Schlag
¥169.00
收藏
复分析导论(第二卷)多复变函数(第4版)
“[俄] Б. В. 沙巴特 著
¥48.00
收藏
实分析:分析综合教程(第1部分)(影印版)
Barry Simon
¥269.00
收藏
实定理的复证明 (影印版)
Peter D. Lax, Lawrence Zalcman
¥55.00
收藏
广义Riemann积分(影印版)
Robert M. McLeod 著
¥0.00
收藏
微积分中的反例(影印版)
Sergiy Klymchuk 著
¥0.00
收藏
抽象分析教程(影印版)
John B. Conway
¥169.00
收藏
选择收货地址
收货人
地址
联系方式
使用新地址
使用新地址
所在地区
请选择
详细地址
收货人
联系电话
设为默认
设为默认收货地址