顶部
收藏

微积分(第8版)(改编版)


作者:
Howard Anton 等著,郭镜明 改编
定价:
106.00元
ISBN:
978-7-04-022664-5
版面字数:
1740.000千字
开本:
16开
全书页数:
867页
装帧形式:
平装
重点项目:
暂无
出版时间:
2008-01-17
读者对象:
高等教育
一级分类:
数学与统计学类
二级分类:
理工类专业数学基础课
三级分类:
高等数学

本书是“世界优秀教材中国版”系列教材之一,从Wiley出版公司引进,由国内专家改编。本书强调对概念的理解,包括描述性的直观理解,数值和图像的处理等,以达到严格的数学定义。另外,本书在许多章最后部分给出实际数学模型,有助于提高学生的学习兴趣。改编者根据我国微积分教学计划,删除一些中国学生中学已经学过的内容,如反三角函数、指数函数、对数函数等;对微积分课程中涉及不多的内容进行了简化,如图形计算部分;对附录内容也进行了适当改动。这样使本书更符合我国教学大纲要求,适合中国学生使用。 本书适合高等院校理工科各专业本科学生作为微积分双语教材使用,也适用于自学者。

  • 前辅文
  • chapter one FUNCTIONS
    • 1.1 Functions
    • 1.2 Arithmetic Operations on and Composition of Functions
    • 1.3 Families of Functions
    • 1.4 Inverse Functions
    • 1.5 Exponential and Logarithmic Functions
    • 1.6 Parametric Equations
  • chapter two LIMITS AND CONTINUITY
    • 2.1 Limits(An Intuitive Approach)
    • 2.2 Computing Limits
    • 2.3 Limits at Infinity
    • 2.4 Limits (Discussed More Rigorously)
    • 2.5 Continuity
    • 2.6 Continuity of Trigonometric and Inverse Functions
  • chapter three THE DERIVATIVE
    • 3.1 Tangent Lines, Velocity, and General Rates of Change
    • 3.2 The Derivative Function
    • 3.3 Techniques of Differentiation
    • 3.4 The Product and Quotient Rules
    • 3.5 Derivatives of Trigonometric Functions
    • 3.6 The Chain Rule
    • 3.7 Related Rates
    • 3.8 Local Linear Approximation
  • chapter four DERIVATIVES OF LOGARITHMIC, EXPONENTIAL, AND INVERSE TRIGONOMETRIC FUNCTIONS
    • 4.1 Implicit Differentiation
    • 4.2 Derivatives of Logarithmic Functions
    • 4.3 Derivatives of Exponential and Inverse Trigonometric Functions
    • 4.4 L’H pital’s Rule
  • chapter five THE DERIVATIVE IN GRAPHING AND APPLICATIONS
    • 5.1 Analysis of Functions I: Increase, Decrease, and Concavity
    • 5.2 Analysis of Functions II: Relative Extrema
    • 5.3 More on Curve Sketching: Rational Functions; Curves with Cusps and Vertical Tangent Lines
    • 5.4 Absolute Maxima and Minima
    • 5.5 Applied Maximum and Minimum Problems
    • 5.6 Rolle’s Theorem
  • chapter six INTEGRATION
    • 6.1 An Overview of the Area Problem
    • 6.2 The Indefinite Integral
    • 6.3 Integration by Substitution
    • 6.4 The Definition of Area as a Limit
    • 6.5 The Definite Integral
    • 6.6 The Fundamental Theorem of Calculus
    • 6.7 Evaluating Definite Integrals by Substitution
    • 6.8 Logarithmic Functions from the Integral Point of View
  • chapter seven APPLICATIONS OF THE DEFINITE INTEGRAL IN GEOMETRY AND ENGINEERING
    • 7.1 Area Between Two Curves
    • 7.2 Volumes by Slicing
    • 7.3 Volumes by Cylindrical Shells
    • 7.4 Length of a Plane Curve
    • 7.5 Work
    • 7.6 Fluid Pressure and Force
  • chapter eight PRINCIPLES OF INTEGRAL EVALUATION
    • 8.1 Integration by Parts
    • 8.2 Trigonometric Integrals
    • 8.3 Trigonometric Substitutions
    • 8.4 Integrating Rational Functions by Partial Fractions
    • 8.5 Improper Integrals
  • chapter nine MATHEMATICAL MODELING WITH DIFFERENTIAL EQUATIONS
    • 9.1 First-Order Differential Equations and Applications
    • 9.2 Modeling with First-Order Differential Equations
    • 9.3 Second-Order Linear Homogeneous Differential Equations
  • chapter ten INFINITE SERIES
    • 10.1 Sequences
    • 10.2 Monotone Sequences
    • 10.3 Infinite Series
    • 10.4 Convergence Tests
    • 10.5 The Comparison, Ratio, and Root Tests
    • 10.6 Alternating Series
    • 10.7 Maclaurin and Taylor Polynomials
    • 10.8 Maclaurin and Taylor Series
    • 10.9 Convergence of Taylor Series
    • 10.10 Differentiating and Integrating Power Series
  • chapter eleven THREE-DIMENSIONAL SPACE
    • 11.1 Rectangular Coordinates in 3-Space; Spheres
    • 11.2 Vectors
    • 11.3 Dot Product
    • 11.4 Cross Product
    • 11.5 Parametric Equations of Lines
    • 11.6 Planes in 3-Space
    • 11.7 Quadric Surfaces
    • 11.8 Cylindrical and Spherical Coordinates
  • chapter twelve VECTOR-VALUED FUNCTIONS
    • 12.1 Introduction to Vector-Valued Functions
    • 12.2 Calculus of Vector-Valued Functions
  • chapter thirteen PARTIAL DERIVATIVES
    • 13.1 Functions of Two or More Variables
    • 13.2 Limits and Continuity
    • 13.3 Partial Derivatives
    • 13.4 Differentiability, Differentials, and Local Linearity
    • 13.5 The Chain Rule
    • 13.6 Directional Derivatives and Gradients
    • 13.7 Tangent Planes and Normal Vectors
    • 13.8 Maxima and Minima of Functions of Two Variables
    • 13.9 Lagrange Multipliers
  • chapter fourteen MULTIPLE INTEGRALS
    • 14.1 Double Integrals
    • 14.2 Double Integrals over Nonrectangular Regions
    • 14.3 Double Integrals in Polar Coordinates
    • 14.4 Parametric Surfaces
    • 14.5 Triple Integrals
    • 14.6 Triple Integrals in Cylindrical and Spherical Coordinates
    • 14.7 Change of Variables in Double Integrals
  • chapter fifteen TOPICS IN VECTOR CALCULUS
    • 15.1 Vector Fields
    • 15.2 Line Integrals
    • 15.3 Independence of Path
    • 15.4 Green’s Theorem
    • 15.5 Surface Integrals
    • 15.6 Applications of Surface Integrals
    • 15.7 The Divergence Theorem
    • 15.8 Stokes’ Theorem
  • appendix
    • SELECTED PROOFS
    • ANSWERS TO SELECTED EXERCISES
    • GLOSSARY

相关图书


相关数字化产品