本书讲述了紧闭包理论及其应用,紧闭包是一种通过约化到正特征来研究等特征环的方法。本书涵盖了紧闭包的基本性质,包括各种类型的奇点,例如F正则奇点和F有理奇点; 介绍了该理论的基本定理, 包括Briancon-Skoda定理的各个版本、各种同调猜想以及关于约化群不变量的Hoch ster-Roberts/Boutot定理。此外, 本书还给出了该理论的一些应用, 包括大Cohen-Macaulay代数的存在性和各种一致Artin-Rees定理。
本书适合于对交换环和交换代数感兴趣的研究生阅读,也可供相关研究人员参考。
- 前辅文
- Chapter 0.A Prehistory of Tight Closure
- Chapter 1.Basic Notions
- Chapter 2.Test Elements and the Persistence of Tight Closure
- Chapter 3.Colon-Capturing and Direct Summands of Regular Rings
- Chapter 4.F-Rational Rings and Rational Singularities
- Chapter 5.Integral Closure and Tight Closure
- Chapter 6.The Hilbert-Kunz Multiplicity
- Chapter 7.Big Cohen-Macaulay Algebras
- Chapter 8.Big Cohen-Macaulay Algebras II
- Chapter 9.Applications of Big Cohen-Macaulay Algebras
- Chapter 10.Phantom Homology
- Chapter 11.Uniform Art in-Rees Theorems
- Chapter 12.The Localization Problem
- Chapter 13.Regular Base Change
- Appendix1:TheNotionofTightClosureinEqualCharacteristicZero(by M.Hoch ster)
- Appendix2:SolutionstotheExercises
- Bibliography