顶部
收藏

楼理论及其在几何和拓扑中的应用(Theory of Buildings and Applications in Geometry and Topology)(英


作者:
季理真、黎景辉、梁志斌、周国晖
定价:
99.00元
ISBN:
978-7-04-062874-6
版面字数:
360.000千字
开本:
特殊
全书页数:
暂无
装帧形式:
平装
重点项目:
暂无
出版时间:
2024-11-18
读者对象:
学术著作
一级分类:
自然科学
二级分类:
数学与统计
三级分类:
代数学

暂无
  • 前辅文
  • Part 1 Buildings and Groups
    • 1. Combinatorics
      • 1.1 Geometry
        • 1.1.1 Graphs
        • 1.1.2 Trees
        • 1.1.3 Euclidean geometry
        • 1.1.4 Incidence geometry
        • 1.1.5 Projective space
      • 1.2 Coxeter group
        • 1.2.1 Coxeter system
        • 1.2.2 Finite reflection group
        • 1.2.3 Affine reflection group
      • 1.3 Chamber systems
        • 1.3.1 Edge-colored graphs
        • 1.3.2 Buildings
      • 1.4 Chamber complexes
        • 1.4.1 Complexes
        • 1.4.2 Chamber complex
        • 1.4.3 Building
      • 1.5 Conclusion
    • 2. Chevalley Groups
      • 2.1 (B
      • 2.2 Simple Lie algebras
        • 2.2.1 An
        • 2.2.2 Bn
        • 2.2.3 Cn
        • 2.2.4 Dn
      • 2.3 Classical groups
        • 2.3.1 GLn
        • 2.3.2 SLn
        • 2.3.3 Sp2n
        • 2.3.4 SO2n
        • 2.3.5 SO2n+
      • 2.4 Chevalley groups and (B
        • 2.4.1 Chevalley basis
        • 2.4.2 Lie algebra representations
        • 2.4.3 Building of a Chevalley group
        • 2.4.4 SLn
      • 2.5 Chevalley groups over local fields
        • 2.5.1 Affine roots
        • 2.5.2 BN pair
      • 2.6 Examples
        • 2.6.1 Sp
        • 2.6.2 SLn
        • 2.6.3 SL3(Qp)
        • 2.6.4 SL2(Qp)
      • 2.7 Conclusion
    • 3. Reductive Groups over Local Fields
      • 3.1 Root data
      • 3.2 Reductive group
        • 3.2.1 Roots
        • 3.2.2 Root data
        • 3.2.3 Root group data
        • 3.2.4 Pinning
      • 3.3 Apartments
        • 3.3.1 Affine space
        • 3.3.2 Affine apartment
        • 3.3.3 Affine extension
        • 3.3.4 Affine roots
      • 3.4 Building of a reductive group
        • 3.4.1 Quasi-split groups
        • 3.4.2 Filtration on root groups
        • 3.4.3 Construction of the building
      • 3.5 Compactification of buildings
        • 3.5.1 Compactifying apartments
        • 3.5.2 Metric
        • 3.5.3 X
      • 3.6 Congruence subgroup
        • 3.6.1 Models
        • 3.6.2 Smooth models of root subgroups
        • 3.6.3 Filtrations on tori
        • 3.6.4 Smooth models associated to concave functions
      • 3.7 Bounded subgroups
        • 3.7.1 Maximal bounded subgroups
        • 3.7.2 Parabolics
        • 3.7.3 Decompositions
      • 3.8 Hecke algebra
        • 3.8.1 Hecke algebra as a matrix algebra
        • 3.8.2 Hecke algebra of p-adic groups
        • 3.8.3 Iwahori subgroup and buildings
        • 3.8.4 Iwahori-Hecke algebra
        • 3.8.5 Hecke algebra and Coxeter group
      • 3.9 Sheaves on buildings
        • 3.9.1 Coefficient systems
        • 3.9.2 Sheaves
    • 4. Rigid Analytic Spaces
      • 4.1 Rigid analytic space and formal schemes
      • 4.2 Theorems of Mumford and Drinfeld
        • 4.2.1 Uniformization
        • 4.2.2 Moduli problem
      • 4.3 Geometric invariant theory
        • 4.3.1 Stable points
        • 4.3.2 Toric action
      • 4.4 Mumford prolongation
      • 4.5 Formal schemes from flag varieties
      • 4.6 Analytic generic fiber
    • Bibliography
  • Part 2 Buildings and Their Applications in Geometry and Topology
    • 5. Introduction and History of Buildings
      • 5.1 Summary
      • 5.2 History of buildings and outline of this part
      • 5.3 Acknowledgments and dedication
    • 6. Spherical Tits Buildings
      • 6.1 Definition of buildings as chamber complexes and Solomon-Tits theorem
      • 6.2 Semisimple Lie groups and buildings
      • 6.3 BN-pairs or Tits systems, and buildings
      • 6.4 Other definitions of and approaches to buildings
      • 6.5 Rigidity of Tits buildings
    • 7. Geometric Realizations and Applications of Spherical Tits Buildings
      • 7.1 Geodesic compactification of symmetric spaces
      • 7.2 Buildings and compactifications of symmetric spaces
      • 7.3 Topological spherical Tits buildings and Moufang buildings
      • 7.4 Mostow strong rigidity
      • 7.5 Rank rigidity of manifolds of nonpositive curvature
      • 7.6 Rank rigidity for CAT(0)-spaces and CAT(0)-groups
      • 7.7 Classification of isoparametric submanifolds
      • 7.8 Spherical buildings and compactifications of locally symmetric spaces
      • 7.9 Geodesic compactification, Gromov compactification and large scale geometry
      • 7.10 Cohomology of arithmetic groups
      • 7.11 Vanishing of simplicial volume of high rank locally symmetric spaces
      • 7.12 Generalizations of buildings: curve complexes and applications
    • 8. Euclidean Buildings
      • 8.1 Definitions and basic properties
      • 8.2 Semisimple p-adic groups and Euclidean buildings
      • 8.3 Compactification of Euclidean buildings by spherical buildings
      • 8.4 Satake compactifications of Bruhat-Tits buildings
    • 9. Applications of Euclidean Buildings
      • 9.1 p-adic curvature and vanishing of cohomology of lattices
      • 9.2 Super-rigidity and harmonic maps into Euclidean buildings
      • 9.3 Applications to S-arithmetic groups
      • 9.4 Applications to harmonic analysis and representation theories
    • 10. R-trees and R-buildings
      • 10.1 Definition of R-trees and basic properties
      • 10.2 Applications of R-trees in topology
      • 10.3 R-Euclidean buildings
      • 10.4 Quasi-isometry rigidity and tangent cones at infinity of symmetric spaces
    • 11. Twin Buildings and Kac-Moody Groups
      • 11.1 Twin buildings
      • 11.2 Kac-Moody algebras and Kac-Moody groups
      • 11.3 Kac-Moody groups as lattices and groups arising from buildings in geometric group theory
    • 12. Other Applications of Buildings
      • 12.1 Applications in algebraic geometry
      • 12.2 Random walks and the Martin boundary
      • 12.3 Finite groups
      • 12.4 Finite geometry
      • 12.5 Algebraic K-groups
      • 12.6 Algebraic combinatorics
      • 12.7 Expanders and Ramanujan graphs
    • Bibliography
  • Index

相关图书