登录
注册
书目下载
联系我们
移动端
扫码关注-登录移动端
帮助中心
高等教育出版社产品信息检索系统
图书产品
数字化产品
期刊产品
会议信息
电子书
线上书展
顶部
首页
图书产品
线性代数与矩阵:第二教程(影印版)
收藏
线性代数与矩阵:第二教程(影印版)
样章
作者:
Helene Shapiro
定价:
135.00元
ISBN:
978-7-04-057031-1
版面字数:
571.000千字
开本:
16开
全书页数:
暂无
装帧形式:
精装
重点项目:
暂无
出版时间:
2022-02-28
读者对象:
学术著作
一级分类:
自然科学
二级分类:
数学与统计
三级分类:
代数学
购买:
样章阅读
图书详情
|
图书目录
暂无
前辅文
Chapter 1. Preliminaries
1.1. Vector Spaces
1.2. Bases and Coordinates
1.3. Linear Transformations
1.4. Matrices
1.5. The Matrix of a Linear Transformation
1.6. Change of Basis and Similarity
1.7. Transposes
1.8. Special Types of Matrices
1.9. Submatrices, Partitioned Matrices, and Block Multiplication
1.10. Invariant Subspaces
1.11. Determinants
1.12. Tensor Products
Exercises
Chapter 2. Inner Product Spaces and Orthogonality
2.1. The Inner Product
2.2. Length, Orthogonality, and Projection onto a Line
2.3. Inner Products in Cn
2.4. Orthogonal Complements and Projection onto a Subspace
2.5. Hilbert Spaces and Fourier Series
2.6. Unitary Tranformations
2.7. The Gram–Schmidt Process and QR Factorization
2.8. Linear Functionals and the Dual Space
Exercises
Chapter 3. Eigenvalues, Eigenvectors, Diagonalization, and Triangularization
3.1. Eigenvalues
3.2. Algebraic and Geometric Multiplicity
3.3. Diagonalizability
3.4. A Triangularization Theorem
3.5. The Gerˇsgorin Circle Theorem
3.6. More about the Characteristic Polynomial
3.7. Eigenvalues of AB and BA
Exercises
Chapter 4. The Jordan and Weyr Canonical Forms
4.1. A Theorem of Sylvester and Reduction to Block Diagonal Form
4.2. Nilpotent Matrices
4.3. The Jordan Form of a General Matrix
4.4. The Cayley–Hamilton Theorem and the Minimal Polynomial
4.5. Weyr Normal Form
Exercises
Chapter 5. Unitary Similarity and Normal Matrices
5.1. Unitary Similarity
5.2. Normal Matrices—the Spectral Theorem
5.3. More about Normal Matrices
5.4. Conditions for Unitary Similarity
Exercises
Chapter 6. Hermitian Matrices
6.1. Conjugate Bilinear Forms
6.2. Properties of Hermitian Matrices and Inertia
6.3. The Rayleigh–Ritz Ratio and the Courant–Fischer Theorem
6.4. Cauchy’s Interlacing Theorem and Other Eigenvalue Inequalities
6.5. Positive Definite Matrices
6.6. Simultaneous Row and Column Operations
6.7. Hadamard’s Determinant Inequality
6.8. Polar Factorization and Singular Value Decomposition
Exercises
Chapter 7. Vector and Matrix Norms
7.1. Vector Norms
7.2. Matrix Norms
Exercises
Chapter 8. Some Matrix Factorizations
8.1. Singular Value Decomposition
8.2. Householder Transformations
8.3. Using Householder Transformations to Get Triangular, Hessenberg, and Tridiagonal Forms
8.4. Some Methods for Computing Eigenvalues
8.5. LDU Factorization
Exercises
Chapter 9. Field of Values
9.1. Basic Properties of the Field of Values
9.2. The Field of Values for Two-by-Two Matrices
9.3. Convexity of the Numerical Range
Exercises
Chapter 10. Simultaneous Triangularization
10.1. Invariant Subspaces and Block Triangularization
10.2. Simultaneous Triangularization, Property P, and Commutativity
10.3. Algebras, Ideals, and Nilpotent Ideals
10.4. McCoy’s Theorem
10.5. Property L
Exercises
Chapter 11. Circulant and Block Cycle Matrices
11.1. The J Matrix
11.2. Circulant Matrices
11.3. Block Cycle Matrices
Exercises
Chapter 12. Matrices of Zeros and Ones
12.1. Introduction: Adjacency Matrices and Incidence Matrices
12.2. Basic Facts about (0, 1)-Matrices
12.3. The Minimax Theorem of K¨onig and Egerv´ary
12.4. SDRs, a Theorem of P. Hall, and Permanents
12.5. Doubly Stochastic Matrices and Birkhoff’s Theorem
12.6. A Theorem of Ryser
Exercises
Chapter 13. Block Designs
13.1. t-Designs
13.2. Incidence Matrices for 2-Designs
13.3. Finite Projective Planes
13.4. Quadratic Forms and the Witt Cancellation Theorem
13.5. The Bruck–Ryser–Chowla Theorem
Exercises
Chapter 14. Hadamard Matrices
14.1. Introduction
14.2. The Quadratic Residue Matrix and Paley’s Theorem
14.3. Results of Williamson
14.4. Hadamard Matrices and Block Designs
14.5. A Determinant Inequality, Revisited
Exercises
Chapter 15. Graphs
15.1. Definitions
15.2. Graphs and Matrices
15.3. Walks and Cycles
15.4. Graphs and Eigenvalues
15.5. Strongly Regular Graphs
Exercises
Chapter 16. Directed Graphs
16.1. Definitions
16.2. Irreducibility and Strong Connectivity
16.3. Index of Imprimitivity
16.4. Primitive Graphs
Exercises
Chapter 17. Nonnegative Matrices
17.1. Introduction
17.2. Preliminaries
17.3. Proof of Perron’s Theorem
17.4. Nonnegative Matrices
17.5. Irreducible Matrices
17.6. Primitive and Imprimitive Matrices
Exercises
Chapter 18. Error-Correcting Codes
18.1. Introduction
18.2. The Hamming Code
18.3. Linear Codes: Parity Check and Generator Matrices
18.4. The Hamming Distance
18.5. Perfect Codes and the Generalized Hamming Code
18.6. Decoding
18.7. Codes and Designs
18.8. Hadamard Codes
Exercises
Chapter 19. Linear Dynamical Systems
19.1. Introduction
19.2. A Population Cohort Model
19.3. First-Order, Constant Coefficient, Linear Differential and Difference Equations
19.4. Constant Coefficient, Homogeneous Systems
19.5. Constant Coefficient, Nonhomogeneous Systems
19.6. Nonnegative Systems
19.7. Markov Chains
Exercises
Bibliography
Index
相关图书
C*-代数例析(影印版)
Kenneth R. Davidson
¥135.00
收藏
Hopf 代数及其在环上的作用(影印版)
Susan Montgomery
¥99.00
收藏
Lie 型有限单群中的扩展性(影印版)
Terence Tao
¥135.00
收藏
Lie 超代数和包络代数(影印版)
Ian M. Musson
¥199.00
收藏
Lie代数的分类和识别(影印版)
Libor Šnobl,Pavel Winternitz
¥135.00
收藏
不变量理论与超代数(影印版)
Frank D. Grosshans, Gian-Carlo Rota, Joel A. Stein
¥67.00
收藏
二次型和 Clifford 群的算术和解析理论(影印版)
Goro Shimura
¥135.00
收藏
代数学引论(第二卷):线性代数 (第3版)
[俄] А. И. 柯斯特利金
¥44.10
收藏
代数学教程
王耀东
¥89.00
收藏
代数学方法(第二卷)线性代数
李文威
¥129.00
收藏
代数群和微分Galois 理论(影印版)
Teresa Crespo, Zbigniew Hajto
¥99.00
收藏
代数群表示论(第二版)(影印版)
Jens Carsten Jantzen
¥199.00
收藏
代数:一门研究生课程(影印版)
I. Martin Isaacs
¥0.00
收藏
动力系统与线性代数(影印版)
Fritz Colonius,Wolfgang Kliemann
¥135.00
收藏
对合之书(影印版)
Max-Albert Knus, Alexander Merkurjev, Markus Rost, Jean-Pier
¥269.00
收藏
选择收货地址
收货人
地址
联系方式
使用新地址
使用新地址
所在地区
请选择
详细地址
收货人
联系电话
设为默认
设为默认收货地址