顶部
收藏

Classical Mechanics(3rd edition)(影印版)经典力学(第三版)


作者:
Goldstein
定价:
72.00元
ISBN:
978-7-04-016091-8
版面字数:
850.000千字
开本:
16开
全书页数:
638页
装帧形式:
平装
重点项目:
暂无
出版时间:
2005-02-15
读者对象:
高等教育
一级分类:
物理学与天文学类
二级分类:
物理学/应用物理学/天文学专业课程
三级分类:
理论力学

暂无
  • 1 Survey of the Elementary Principles
    • 1.1 Mechanics of a Particle
    • 1.2 Mechanics of a System of Particles
    • 1.3 Constraints
    • 1.4 D’Alembert’s Principle and Lagrange's Equations
    • 1.5 Velocity-Dependent Potentials and the Dissipation Function
    • 1.6 Simple Applications of the Lagrangian Formulation
  • 2 Variational Principles and Lagrange’s Equations
    • 2.1 Hamilton’s Principle
    • 2.2 Some Techniques of the Calculus of Variations
    • 2.3 Derivation of Lagrange’s Equations from Hamilton's Principle
    • 2.4 Extension of Hamilton’s Principle to Nonholonomic Systems
    • 2.5 Advantages of a Variational Principle Formulation
    • 2.6 Conservation Theorems and Symmetry Properties
    • 2.7 Energy Function and the Conservation of Energy
  • 3 The Central Force Problem
    • 3.1 Reduction to the Equivalent One-Body Problem
    • 3.2 The Equations of Motion and First Integrals
    • 3.3 The Equivalent One-Dimensional Problem, and Classification of Orbits
    • 3.4 The Virial Theorem
    • 3.5 The Differential Equation for the Orbit, and Integrable Power-Law Potentials
    • 3.6 Conditions for Closed Orbits (Bertrand’s Theorem)
    • 3.7 The Kepler Problem: Inverse-Square Law of Force
    • 3.8 The Motion in Time in the Kepler Problem
    • 3.9 The Laplace-Runge-Lenz Vector
    • 3.10 Scattering in a Central Force Field
    • 3.11 Transformation of the Scattering Problem to Laboratory Coordinates
    • 3.12 The Three-Body Problem
  • 4 The Kinematics of Rigid Body Motion
    • 4.1 The Independent Coordinates of a Rigid Body
    • 4.2 Orthogonal Transformations
    • 4.3 Formal Properties of the Transformation Matrix
    • 4.4 The Eiller Angles
    • 4.5 The Cayley-Klein Parameters and Related Quantities
    • 4.6 Euler’s Theorem on the Motion of a Rigid Body
    • 4.7 Finite Rotations
    • 4.8 Infinitesimal Rotations
    • 4.9 Rate of Change of a Vector
    • 4.10 The Coriolis Effect
  • 5 The Rigid Body Equations of Motion
    • 5.1 Angular Momentum and Kinetic Energy of Motion about a Point
    • 5.2 Tensors
    • 5.3 The Inertia Tensor and the Moment of Inertia
    • 5.4 The Eigenvalues of the Inertia Tensor and the Principal Axis Transformation
    • 5.5 Solving Rigid Body Problems and the Euler Equations of Motion
    • 5.6 Torque-free Motion of a Rigid Body
    • 5.7 The Heavy Symmetrical Top with One Point Fixed
    • 5.8 Precession of the Equinoxes and of Satellite Orbits
    • 5.9 Precession of Systems of Charges in a Magnetic Field
  • 6 Oscillations
    • 6.1 Formulation of the Problem
    • 6.2 The Eigenvalue Equation and the Principal Axis Transformation
    • 6.3 Frequencies of Free Vibration, and Normal Coordinates
    • 6.4 Free Vibrations of a Linear Triatomic Molecule
    • 6.5 Forced Vibrations and the Effect of Dissipative Forces
    • 6.6 Beyond Small Oscillations: The Damped Driven Pendulum and the Josephson Junction
  • 7 The Classical Mechanics of the Special Theory of Relativity
    • 7.1 Basic Postulates of the Special Theory
    • 7.2 Lorentz Transformations
    • 7.3 Velocity Addition and Thomas Precession
    • 7.4 Vectors and the Metric Tensor
    • 7.5 1-Forms and Tensors
    • 7.6 Forces in the Special Theory
    • 7.7 Relativistic Kinematics of Collisions and Many-Particle Systems
    • 7.8 Relativistic Angular Momentum
    • 7.9 The Lagrangian Formulation of Relativistic Mechanics
    • 7.10 Co variant Lagrangian Formulations
    • 7.11 Introduction to the General Theory of Relativity
  • 8 The Hamilton Equations of Motion
    • 8.1 Legendre Transformations and the Hamilton Equations of Motion
    • 8.2 Cyclic Coordinates and Conservation Theorems
    • 8.3 Routh’s Procedure
    • 8.4 The Hamiltonian Formulation of Relativistic Mechanics
    • 8.5 Derivation of Hamilton’s Equations from a Variational Principle
    • 8.6 The Principle of Least Action
  • 9 Canonical Transformations
    • 9.1 The Equations of Canonical Transformation
    • 9.2 Examples of Canonical Transformations
    • 9.3 The Harmonic Oscillator
    • 9.4 The Symplectic Approach to Canonical Transformations
    • 9.5 Poisson Brackets and Other Canonical Invariants
    • 9.6 Equations of Motion, Infinitesimal Canonical Transformations, and Conservation Theorems in the Poisson Bracket Formulation
    • 9.7 The Angular Momentum Poisson Bracket Relations
    • 9.8 Symmetry Groups of Mechanical Systems
    • 9.9 Liouville’s Theorem
  • 10 Hamilton-Jacobi Theory and Action-Angle Variables
    • 10.1 The Hamilton-Jacobi Equation for Hamilton’s Principal Function
    • 10.2 The Harmonic Oscillator Problem as an Example of the Hamilton-Jacobi Method
    • 10.3 The Hamilton-Jacobi Equation for Hamilton’s Characteristic Function
    • 10.4 Separation of Variables in the Hamilton-Jacobi Equation
    • 10.5 Ignorable Coordinates and the Kepler Problem
    • 10.6 Action-angle Variables in Systems of One Degree of Freedom
    • 10.7 Action-Angle Variables for Completely Separable Systems
    • 10.8 The Kepler Problem in Action-angle Variables
  • 11 Classical Chaos
    • 11.1 Periodic Motion
    • 11.2 Perturbations and the Kolmnogorov-Arnold-Moser Theorem
    • 11.3 Attractors
    • 11.4 Chaotic Trajectories and Liapunov Exponents
    • 11.5 Poincaré Maps
    • 11.6 Henon-Heiles Hamiltonian
    • 11.7 Bifurcations, Driven-damped Harmonic Oscillator, and Parametric Resonance
    • 11.8 The Logistic Equation
    • 11.9 Fractals and Dimensionality
  • 12 Canonical Perturbation Theory
    • 12.1 Introduction
    • 12.2 Time-dependent Perturbation Theory
    • 12.3 Illustrations of Time-dependent Perturbation Theory
    • 12.4 Time-independent Perturbation Theory
    • 12.5 Adiabatic Invariants
  • 13 Introduction to the Lagrangian and Hamiltonian Formulations for Continuous Systems and Fields
    • 13.1 The Transition from a Discrete to a Continuous System
    • 13.2 The Lagrangian Formulation for Continuous Systems
    • 13.3 The Stress-energy Tensor and Conservation Theorems
    • 13.4 Hamiltonian Formulation
    • 13.5 Relativistic Field Theory
    • 13.6 Examples of Relativistic Field Theories
    • 13.7 Noether’s Theorem
  • Appendix A Euler Angles in Alternate Conventions and Cayley-Klein Parameters
  • Appendix B Groups and Algebras
    • Selected Bibliography Author
    • Index Subject
    • Index

相关图书