顶部
收藏

有限群导引 (英文版)(Finite Groups: An Introduction)


作者:
Jean-Pierre Serre
定价:
59.00元
ISBN:
978-7-04-044641-8
版面字数:
230.000千字
开本:
16开
全书页数:
181页
装帧形式:
精装
重点项目:
暂无
出版时间:
2016-04-15
读者对象:
学术著作
一级分类:
自然科学
二级分类:
数学与统计
三级分类:
代数学

有限群理论以在论述上简明、但在论证上简单而引人注目。并且以基础的方式应用于数学的多个分支,例如数论。

本书给出了有限群简明、基础的介绍,以最大限度地服务初学者和数学家。本书共10章,每章都配备了一系列的练习。

  • Preface
  • Conventions and Notation
  • 1 Preliminaries
    • 1.1 Group actions
    • 1.2 Normal subgroups, automorphisms, characteristic subgroups, simple groups
    • 1.3 Filtrations and Jordan-Hölder theorem
    • 1.4 Subgroups of products: Goursat’s lemma and Ribet’s lemma
    • 1.5 Exercises
  • 2 Sylow theorems
    • 2.1 Definitions
    • 2.2 Existence of p-Sylow subgroups
    • 2.3 Properties of the p-Sylow subgroups
    • 2.4 Fusion in the normalizer of a p-Sylow subgroup
    • 2.5 Local conjugation and Alperin’s theorem
    • 2.6 Other Sylow-like theories
    • 2.7 Exercises
  • 3 Solvable groups and nilpotent groups
    • 3.1 Commutators and abelianization
    • 3.2 Solvable groups
    • 3.3 Descending central series and nilpotent groups
    • 3.4 Nilpotent groups and Lie algebras
    • 3.5 Kolchin’s theorem
    • 3.6 Finite nilpotent groups
    • 3.7 Applications of 2-groups to field theory
    • 3.8 Abelian groups
    • 3.9 The Frattini subgroup
    • 3.10 Characterizations using subgroups generated by two elements
    • 3.11 Exercises
  • 4 Group extensions
    • 4.1 Cohomology groups
    • 4.2 A vanishing criterion for the cohomology of finite groups
    • 4.3 Extensions, sections and semidirect products
    • 4.4 Extensions with abelian kernel
    • 4.5 Extensions with arbitrary kernel
    • 4.6 Extensions of groups of relatively prime orders
    • 4.7 Liftings of homomorphisms
    • 4.8 Application to p-adic liftings
    • 4.9 Exercises
  • 5 Hall subgroups
    • 5.1 π-subgroups
    • 5.2 Preliminaries: permutable subgroups
    • 5.3 Permutable families of Sylow subgroups
    • 5.4 Proof of theorem 5.1
    • 5.5 Sylow-like properties of the π-subgroups
    • 5.6 A solvability criterion
    • 5.7 Proof of theorem 5.3
  • 6 Frobenius groups
    • 6.1 Union of conjugates of a subgroup
    • 6.2 An improvement of Jordan’s theorem
    • 6.3 Frobenius groups: definition
    • 6.4 Frobenius kernels
    • 6.5 Frobenius complements
    • 6.6 Exercises
  • 7 Transfer
    • 7.1 Definition of Ver : Gab → Hab
    • 7.2 Computation of the transfer
    • 7.3 A two-century-old example of transfer: Gauss lemma
    • 7.4 An application of transfer to infinite groups
    • 7.5 Transfer applied to Sylow subgroups
    • 7.6 Application: groups of odd order &lt
    • 7.7 Application: simple groups of order &lt
    • 7.8 The use of transfer outside group theory
    • 7.9 Exercises
  • 8 Characters
    • 8.1 Linear representations and characters
    • 8.2 Characters, hermitian forms and irreducible representations
    • 8.3 Schur’s lemma
    • 8.4 Orthogonality relations
    • 8.5 Structure of the group algebra and of its center
    • 8.6 Integrality properties
    • 8.7 Galois properties of characters
    • 8.8 The ring R(G)
    • 8.9 Realizing representations over a subfield of C, for instance the field R
    • 8.10 Application of character theory: proof of Frobenius’s theorem 6.7
    • 8.11 Application of character theory: proof of Burnside’s theorem 5.4
    • 8.12 The character table of A5
    • 8.13 Exercises
  • 9 Finite subgroups of GLn
    • 9.1 Minkowski’s theorem on the finite subgroups of GLn(Q)
    • 9.2 Jordan’s theorem on the finite subgroups of GLn(C)
    • 9.3 Exercises
  • 10 Small Groups
    • 10.1 Small groups and their isomorphisms
    • 10.2 Embeddings of A4, S4 and A5 in PGL2(Fq)
  • Bibliography
  • Index of names

相关图书