登录
注册
书目下载
联系我们
移动端
扫码关注-登录移动端
帮助中心
高等教育出版社产品信息检索系统
图书产品
数字化产品
期刊产品
会议信息
电子书
线上书展
顶部
首页
图书产品
变换群和李代数(英文版) (Transformation Groups and Lie Algebras)
收藏
变换群和李代数(英文版) (Transformation Groups and Lie Algebras)
样章
作者:
Nail Ibragimov
定价:
59.00元
ISBN:
978-7-04-036741-6
版面字数:
210.000千字
开本:
16开
全书页数:
185页
装帧形式:
精装
重点项目:
暂无
出版时间:
2013-03-11
读者对象:
学术著作
一级分类:
自然科学
二级分类:
数学与统计
三级分类:
代数学
购买:
样章阅读
图书详情
|
图书目录
暂无
Front Matter
Part I Local Transformation Groups
1 Preliminaries
1.1 Changes of frames of reference and point transformations
1.1.1 Translations
1.1.2 Rotations
1.1.3 Galilean transformation
1.2 Introduction of transformation groups
1.2.1 Definitions and examples
1.2.2 Different types of groups
1.3 Some useful groups
1.3.1 Finite continuous groups on the straight line
1.3.2 Groups on the plane
1.3.3 Groups in IRn
Exercises to Chapter 1
2 One-parameter groups and their invariants
2.1 Local groups of transformations
2.1.1 Notation and definition
2.1.2 Groups written in a canonical parameter
2.1.3 Infinitesimal transformations and generators
2.1.4 Lie equations
2.1.5 Exponential map
2.1.6 Determination of a canonical parameter
2.2 Invariants .
2.2.1 Definition and infinitesimal test
2.2.2 Canonical variables
2.2.3 Construction of groups using canonical variables
2.2.4 Frequently used groups in the plane
2.3 Invariant equations
2.3.1 Definition and infinitesimal test
2.3.2 Invariant representation of invariant manifolds
2.3.3 Proof of Theorem 2.9
2.3.4 Examples on Theorem 2.9
Exercises to Chapter 2
3 Groups admitted by differential equations
3.1 Preliminaries
3.1.1 Differential variables and functions
3.1.2 Point transformations
3.1.3 Frame of differential equations
3.2 Prolongation of group transformations
3.2.1 One-dimensional case
3.2.2 Prolongation with several differential variables
3.2.3 General case
3.3 Prolongation of group generators
3.3.1 One-dimensional case
3.3.2 Several differential variables
3.3.3 General case
3.4 First definition of symmetry groups
3.4.1 Definition
3.4.2 Examples
3.5 Second definition of symmetry groups
3.5.1 Definition and determining equations
3.5.2 Determining equation for second-order ODEs
3.5.3 Examples on solution of determining equations
Exercises to Chapter 3
4 Lie algebras of operators
4.1 Basic definitions
4.1.1 Commutator
4.1.2 Properties of the commutator
4.1.3 Properties of determining equations
4.1.4 Lie algebras
4.2 Basic properties
4.2.1 Notation
4.2.2 Subalgebra and ideal
4.2.3 Derived algebras
4.2.4 Solvable Lie algebras
4.3 Isomorphism and similarity
4.3.1 Isomorphic Lie algebras
4.3.2 Similar Lie algebras
4.4 Low-dimensional Lie algebras
4.4.1 One-dimensional algebras
4.4.2 Two-dimensional algebras in the plane
4.4.3 Three-dimensional algebras in the plane
4.4.4 Three-dimensional algebras in IR3
4.5 Lie algebras and multi-parameter groups
4.5.1 Definition of multi-parameter groups
4.5.2 Construction of multi-parameter groups
Exercises to Chapter 4
5 Galois groups via symmetries
5.1 Preliminaries
5.2 Symmetries of algebraic equations
5.2.1 Determining equation
5.2.2 First example
5.2.3 Second example
5.2.4 Third example
5.3 Construction of Galois groups
5.3.1 First example
5.3.2 Second example
5.3.3 Third example
5.3.4 Concluding remarks
Assignment to Part I
Part II Approximate Transformation Groups
6 Preliminaries
6.1 Motivation
6.2 A sketch on Lie transformation groups
6.2.1 One-parameter transformation groups
6.2.2 Canonical parameter
6.2.3 Group generator and Lie equations
6.2.4 Exponential map
6.3 Approximate Cauchy problem
6.3.1 Notation
6.3.2 Definition of the approximate Cauchy problem
7 Approximate transformations
7.1 Approximate transformations defined
7.2 Approximate one-parameter groups
7.2.1 Introductory remark
7.2.2 Definition of one-parameter approximate transformation groups
7.2.3 Generator of approximate transformation group
7.3 Infinitesimal description
7.3.1 Approximate Lie equations
7.3.2 Approximate exponential map
Exercises to Chapter 7
8 Approximate symmetries
8.1 Definition of approximate symmetries
8.2 Calculation of approximate symmetries
8.2.1 Determining equations
8.2.2 Stable symmetries
8.2.3 Algorithm for calculation
8.3 Examples .
8.3.1 First example
8.3.2 Approximate commutator and Lie algebras
8.3.3 Second example
8.3.4 Third example
Exercises to Chapter 8
9 Applications
9.1 Integration of equations with a small parameter using approximate symmetries
9.1.1 Equation having no exact point symmetries
9.1.2 Utilization of stable symmetries
9.2 Approximately invariant solutions
9.2.1 Nonlinear wave equation
9.2.2 Approximate travelling waves of KdV equation
9.3 Approximate conservation laws
Exercises to Chapter 9
Assignment to Part II
Bibliography
Index
相关图书
An Introduction to Groups and Lattices: Finite Groups and Positive Definite Rat
Robert L. Griess,Jr
¥58.00
收藏
Arithmetic Geometry and Automorphic Forms(算术几何与自守形式)英文版
James Cogdell
¥89.00
收藏
Arithmetic Groups and Reduction Theory(英文版)
Armand Borel, Roger Godement, Carl Ludwig Siegel, André Weil
¥99.00
收藏
Cohomology of Groups and Algebraic K-theory(群的上同调与代数K-理论)
季理真 刘克峰 丘成桐
¥69.00
收藏
Geometry, analysis and topology of discrete groups(离散群的几何、分析与拓扑)
季理真 刘克峰 杨乐 丘成桐 主编
¥68.00
收藏
Lie 型有限单群中的扩展性(影印版)
Terence Tao
¥135.00
收藏
Lie 超代数和包络代数(影印版)
Ian M. Musson
¥199.00
收藏
Lie代数的分类和识别(影印版)
Libor Šnobl,Pavel Winternitz
¥135.00
收藏
Rota-Baxter 代数导论 (英文版)
郭锂
¥69.00
收藏
Transformation Groups and Moduli Spaces of Curves(变换群与曲线模空间)
季理真 丘成桐
¥69.00
收藏
变换群和李代数(海外版)
Nail Ibragimov
¥0.00
收藏
旋量代数与李群、李代数
戴建生
¥59.00
收藏
旋量代数与李群、李代数(修订版)
戴建生
¥79.00
收藏
有限群导引 (英文版)(Finite Groups: An Introduction)
Jean-Pierre Serre
¥59.00
收藏
李代数
万哲先
¥59.00
收藏
选择收货地址
收货人
地址
联系方式
使用新地址
使用新地址
所在地区
请选择
详细地址
收货人
联系电话
设为默认
设为默认收货地址