顶部
收藏

同伦分析方法与非线性微分方程(英文版)


作者:
廖世俊
定价:
98.00元
ISBN:
978-7-04-032298-9
版面字数:
700.000千字
开本:
特殊
全书页数:
565页
装帧形式:
精装
重点项目:
暂无
出版时间:
2012-02-09
读者对象:
学术著作
一级分类:
自然科学
二级分类:
数学与统计
三级分类:
偏微分方程

本书与Springer合作出版。

本书介绍同伦分析方法的基本思想、理论上的发展与完善以及新的应用。全书分三个部分。第一部分描述同伦分析方法的基本思想和相关理论。第二部分给出基于同伦分析方法和计算机代数软件 Mathematica 开发的软件包 BVPh 1.0 及其应用举例。该软件包可以求解具有多解、奇性、多点边界条件的多种类型的非线性边值问题。第三部分给出同伦分析方法求解非线性偏微分方程的一些典型例子,如美式期权问题、任意多个波浪的共振条件等。本书提供可免费下载的 Mathematica 程序,以方便读者更好地理解和应用该方法。

本书适合于应用数学、物理、非线性力学、金融和工程等领域对强非线性问题解析近似解感兴趣的科研人员和研究生。

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

  • FrontMatter
  • PartIBasicIdeasandTheorems
  • 1Introduction
    • 1.1Motivationandpurpose
    • 1.2Characteristicofhomotopyanalysismethod
    • 1.3Outline
    • References
  • 2BasicIdeasoftheHomotopyAnalysisMethod
    • 2.1Conceptofhomotopy
    • 2.2Example2.1:generalizedNewtonianiterationformula
    • 2.3Example2.2:nonlinearoscillation
      • 2.3.1Analysisofthesolutioncharacteristic
      • 2.3.2Mathematicalformulations
      • 2.3.3Convergenceofhomotopy-seriessolution
      • 2.3.4Essenceoftheconvergence-controlparameterc0
      • 2.3.5Convergenceaccelerationbyhomotopy-Pad′etechnique
      • 2.3.6Convergenceaccelerationbyoptimalinitialapproximation
      • 2.3.7Convergenceaccelerationbyiteration
      • 2.3.8Flexibilityonthechoiceofauxiliarylinearoperator
    • 2.4Concludingremarksanddiscussions
    • Appendix2.1Derivationofdnin(2.57)
    • Appendix2.2Derivationof(2.55)bythe2ndapproach
    • Appendix2.3ProofofTheorem2.3
    • Appendix2.4Mathematicacode(withoutiteration)forExample2.2
    • Appendix2.5Mathematicacode(withiteration)forExample2.2Problems
    • References
  • 3OptimalHomotopyAnalysisMethod
    • 3.1Introduction
    • 3.2Anillustrativedescription
      • 3.2.1Basicideas
      • 3.2.2Differenttypesofoptimalmethods
    • 3.3Systematicdescription
    • 3.4Concludingremarksanddiscussions
    • Appendix3.1MathematicacodeforBlasiusflow
    • Problems
    • References
  • 4SystematicDescriptionsandRelatedTheorems
    • 4.1Briefframeofthehomotopyanalysismethod
    • 4.2Propertiesofhomotopy-derivative
    • 4.3Deformationequations
      • 4.3.1Abriefhistory
      • 4.3.2High-orderdeformationequations
      • 4.3.3Examples
    • 4.4Convergencetheorems
    • 4.5Solutionexpression
      • 4.5.1Choiceofinitialapproximation
      • 4.5.2Choiceofauxiliarylinearoperator
    • 4.6Convergencecontrolandacceleration
      • 4.6.1Optimalconvergence-controlparameter
      • 4.6.2Optimalinitialapproximation
      • 4.6.3Homotopy-iterationtechnique
      • 4.6.4Homotopy-Pad′etechnique
    • 4.7Discussionsandopenquestions
    • References
  • 5RelationshiptoEulerTransform
    • 5.1Introduction
    • 5.2GeneralizedTaylorseries
    • 5.3Homotopytransform
    • 5.4RelationbetweenhomotopyanalysismethodandEulertransform
    • 5.5Concludingremarks
    • References
  • 6SomeMethodsBasedontheHAM
    • 6.1Abriefhistoryofthehomotopyanalysismethod
    • 6.2Homotopyperturbationmethod
    • 6.3Optimalhomotopyasymptoticmethod
    • 6.4Spectralhomotopyanalysismethod
    • 6.5Generalizedboundaryelementmethod
    • 6.6Generalizedscaledboundaryfiniteelementmethod
    • 6.7Predictorhomotopyanalysismethod
    • References
  • PartIIMathematicaPackageBVPhandItsApplications
  • 7MathematicaPackageBVPh
    • 7.1Introduction
      • 7.1.1Scope
      • 7.1.2Briefmathematicalformulas
      • 7.1.3Choiceofbasefunctionandinitialguess
      • 7.1.4Choiceoftheauxiliarylinearoperator
      • 7.1.5Choiceoftheauxiliaryfunction
      • 7.1.6Choiceoftheconvergence-controlparameterc0
    • 7.2Approximationanditerationofsolutions
      • 7.2.1Polynomials
      • 7.2.2Trigonometricfunctions
      • 7.2.3Hybrid-basefunctions
    • 7.3AsimpleusersguideoftheBVPh1.0
      • 7.3.1Keymodules
      • 7.3.2Controlparameters
      • 7.3.3Input
      • 7.3.4Output
      • 7.3.5Globalvariables
    • Appendix7.1MathematicapackageBVPh(version1.0)
    • References
  • 8NonlinearBoundary-valueProblemswithMultipleSolutions
    • 8.1Introduction
    • 8.2Briefmathematicalformulas
    • 8.3Examples
      • 8.3.1Nonlineardiffusion-reactionmodel
      • 8.3.2Athree-pointnonlinearboundary-valueproblem
      • 8.3.3Channelflowswithmultiplesolutions
    • 8.4Concludingremarks
    • Appendix8.1InputdataofBVPhforExample8.3.1
    • Appendix8.2InputdataofBVPhforExample8.3.2
    • Appendix8.3InputdataofBVPhforExample8.3.3
    • Problems
    • References
  • 9NonlinearEigenvalueEquationswithVaryingCoefficients
    • 9.1Introduction
    • 9.2Briefmathematicalformulas
    • 9.3Examples
      • 9.3.1Non-uniformbeamactedbyaxialload
      • 9.3.2Gelfandequation
      • 9.3.3Equationwithsingularityandvaryingcoefficient
      • 9.3.4Multipointboundary-valueproblemwithmultiplesolutions
      • 9.3.5Orr-Sommerfeldstabilityequationwithcomplexcoefficient
    • 9.4Concludingremarks
    • Appendix9.1InputdataofBVPhforExample9.3.1
    • Appendix9.2InputdataofBVPhforExample9.3.2
    • Appendix9.3InputdataofBVPhforExample9.3.3
    • Appendix9.4InputdataofBVPhforExample9.3.4
    • Appendix9.5InputdataofBVPhforExample9.3.5
    • Problems
    • References
  • 10ABoundary-layerFlowwithanInfiniteNumberofSolutions
    • 10.1Introduction
    • 10.2Exponentiallydecayingsolutions
    • 10.3Algebraicallydecayingsolutions
    • 10.4Concludingremarks
    • Appendix10.1InputdataofBVPhforexponentiallydecayingsolution
    • Appendix10.2InputdataofBVPhforalgebraicallydecayingsolution
    • References
  • 11Non-similarityBoundary-layerFlows
    • 11.1Introduction
    • 11.2Briefmathematicalformulas
    • 11.3Homotopy-seriessolution
    • 11.4Concludingremarks
    • Appendix11.1InputdataofBVPh
    • References
  • 12UnsteadyBoundary-layerFlows
    • 12.1Introduction
    • 12.2Perturbationapproximation
    • 12.3Homotopy-seriessolution
    • 12.3.1Briefmathematicalformulas
    • 12.3.2Homotopy-approximation
    • 12.4Concludingremarks
    • Appendix12.1InputdataofBVPh
    • References
  • PartIIIApplicationsinNonlinearPartialDifferentialEquations
  • 13ApplicationsinFinance:AmericanPutOptions
    • 13.1Mathematicalmodeling
    • 13.2Briefmathematicalformulas
    • 13.3Validityoftheexplicithomotopy-approximations
    • 13.4Apracticalcodeforbusinessmen
    • 13.5Concludingremarks
    • Appendix13.1Detailedderivationoffn()andgn()
    • Appendix13.2MathematicacodeforAmericanputoption
    • Appendix13.3MathematicacodeAPOhforbusinessmen
    • References
  • 14TwoandThreeDimensionalGelfandEquation
    • 14.1Introduction
    • 14.2Homotopy-approximationsof2DGelfandequation
      • 14.2.1Briefmathematicalformulas
      • 14.2.2Homotopy-approximations
    • 14.3Homotopy-approximationsof3DGelfandequation
    • 14.4Concludingremarks
    • Appendix14.1Mathematicacodeof2DGelfandequation
    • Appendix14.2Mathematicacodeof3DGelfandequation
    • References
  • 15InteractionofNonlinearWaterWaveandNonuniformCurrents
    • 15.1Introduction
    • 15.2Mathematicalmodeling
      • 15.2.1Originalboundary-valueequation
      • 15.2.2Dubreil-Jacotintransformation
    • 15.3Briefmathematicalformulas
      • 15.3.1Solutionexpression
      • 15.3.2Zeroth-orderdeformationequation.
      • 15.3.3High-orderdeformationequation
      • 15.3.4Successivesolutionprocedure
    • 15.4Homotopyapproximations
    • 15.5Concludingremarks
    • Appendix15.1Mathematicacodeofwave-currentinteraction
    • References
  • 16ResonanceofArbitraryNumberofPeriodicTravelingWaterWaves
    • 16.1Introduction
    • 16.2Resonancecriterionoftwosmall-amplitudeprimarywaves
      • 16.2.1BriefMathematicalformulas
      • 16.2.2Non-resonantwaves
      • 16.2.3Resonantwaves
    • 16.3Resonancecriterionofarbitrarynumberofprimarywaves
      • 16.3.1Resonancecriterionofsmall-amplitudewaves
      • 16.3.2Resonancecriterionoflarge-amplitudewaves
    • 16.4Concludingremarkanddiscussions
    • Appendix16.1Detailedderivationofhigh-orderequation
    • References
  • Index

相关图书