Optimization and Regularization for Computational Inverse Problems and Applications focuses on advances in inversion theory and recent developments with practical applications, particularly emphasizing the combination of optimization and regularization for solving inverse problems. This book covers both the methods, including standard regularization theory, Fejer processes for linear and nonlinear problems, the balancing principle, extrapolated regularization, nonstandard regularization, nonlinear gradient method, the nonmonotone gradient method, subspace method and Lie group method; and the practical applications, such as the reconstruction problem for inverse scattering, molecular spectra data processing, quantitative remote sensing inversion, seismic inversion using the Lie group method, and the gravitational lensing problem.
Scientists, researchers and engineers, as well as graduate students engaged in applied mathematics, engineering, geophysics, medical science, image processing, remote sensing and atmospheric science will benefit from this book.