顶部
收藏

矩映射、配边和Hamilton群作用(影印版)


作者:
Victor Guillemin, Viktor Ginzburg, Yael Karshon
定价:
169.00元
ISBN:
978-7-04-053595-2
版面字数:
580.000千字
开本:
特殊
全书页数:
暂无
装帧形式:
精装
重点项目:
暂无
出版时间:
2020-04-20
物料号:
53595-00
读者对象:
学术著作
一级分类:
自然科学
二级分类:
数学与统计
三级分类:
几何学

暂无
  • 前辅文
  • Chapter 1.Introduction
    • 1.Topological aspects of Hamiltonian group actions
    • 2.Hamiltonian cobordism
    • 3.The linearization theorem and non-compact cobordisms
    • 4.Abstract moment maps and non-degeneracy
    • 5.The quantum linearization theorem and its applications
    • 6.Acknowledgements
  • Chapter 2.Hamiltonian cobordism
    • 1.Hamiltonian group actions
    • 2.Hamiltonian geometry
    • 3.Compact Hamiltonian cobordisms
    • 4.Proper Hamiltonian cobordisms
    • 5.Hamiltonian complex cobordisms
  • Chapter 3.Abstract moment maps
    • 1.Abstract moment maps:definitions and examples
    • 2.Proper abstract moment maps
    • 3.Cobordism
    • 4.First examples of proper cobordisms
    • 5.Cobordism s of surfaces
    • 6.Cobordism s of linear actions
  • Chapter 4.The linearization theorem
    • 1.The simplest case of the linearization theorem
    • 2.The Hamiltonian linearization theorem
    • 3.The linearization theorem for abstract moment maps
    • 4.Linear torus actions
    • 5.The right-hand side of the linearization theorems
    • 6.The Duistermaat-Heckman and Guillemin-Lerman-Sternberg formulas
  • Chapter 5.Reduction and applications
    • 1.(Pre-) symplectic reduction
    • 2.Reduction for abstract moment maps
    • 3.The Duis term a at-Heckman theorem
    • 4.Kahler reduction
    • 5.The complex Del zant construction
    • 6.Cobordism of reduced spaces
  • Chapter 6.Geometric quantization
    • 1.Quantization and group actions
    • 2.Pre-quantization
    • 3.Pre-quantization of reduced spaces
    • 4.Kirillov-Kosta nt pre-quantization
    • 5.Polarizations, complex structures,and geometric quantization
    • 6.Dol be ault Quantization and the Riemann-Roch formula
    • 7.Stable complex quantization and Spin°quantization
    • 8.Geometric quantization as a push-forward
  • Chapter 7.The quantum version of the linearization theorem
    • 1.The quantization of Cd
    • 2.Partition functions
    • 3.The character of Q(Cd
    • 4.A quantum version of the linearization theorem
  • Chapter 8.Quantization commutes with reduction
    • 1.Quantization and reduction commute
    • 2.Quantization of stable complex toric varieties
    • 3.Linearization of[Q, R] = 0
    • 4.Straightening the symplectic and complex structures
    • 5.Passing to holomorphic sheaf cohomology
    • 6.Computing global sections; the lit set
    • 7.The Cech complex
    • 8.The higher cohomology
    • 9.Singular[Q, R] = 0 for non-symplectic Hamiltonian G-manifolds
    • 10.Overview of the literature
  • Appendix A.Signs and normalization conventions
    • 1.The representation of GonC°(M)
    • 2.The integral weight lattice
    • 3.Connection and curvature for principal torus bundles
    • 4.Curvature and Chern classes
    • 5.Equivariant curvature; integral equivariant cohomology
  • Appendix B.Proper actions of Lie groups
    • 1.Basic definitions
    • 2.The slice theorem
    • 3.Corollaries of the slice therrem
    • 4.The Mostow-Palais embedding theorem
    • 5.Rigidity of compact group actions
  • Appendix C.Equivariant cohomology
    • 1.The definition and basic properties of equivariant cohomology
    • 2.Reduction and cohomology
    • 3.Additivity and localization
    • 4.Formality
    • 5.The relation between H*G and H*
    • 6.Equivariant vector bundles and characteristic classes
    • 7.The Atiyah-Bott-Berline-Vergne localization formula
    • 8.Applications of the Atiyah-Bott-Berline-Vergne localization formula
    • 9.Equivariant homology
  • Appendix D.Stable complex and Spin°-structures
    • 1.Stable complex structures
    • 2.Spin°-structures
    • 3.Spin-structures and stable complex structures
  • Appendix E.Assignments and abstract moment maps
    • 1.Existence of abstract moment maps
    • 2.Exact moment maps
    • 3.Hamiltonian moment maps
    • 4.Abstract moment maps on linear spaces are exact
    • 5.Formal cobordism of Hamiltonian spaces
  • Appendix F.Assignment cohomology
    • 1.Construction of assignment cohomology
    • 2.Assignments with other coefficients
    • 3.Assignment cohomology for pairs
    • 4.Examples of calculations of assignment cohomology
    • 5.Generalizations of assignment cohomology
  • Appendix G.Non-degenerate abstract moment maps
    • 1.Definitions and basic examples
    • 2.Global properties of non-degenerate abstract moment maps
    • 3.Existence of non-degenerate two-forms
  • Appendix H.Characteristic numbers,non-degenerate cobordisms, and non-virtual quantization
    • 1.The Hamiltonian cobordism ring and characteristic classes
    • 2.Characteristic numbers
    • 3.Characteristic numbers as a full system of invariants
    • 4.Non-degenerate cobordisms
    • 5.Geometric quantization
  • Appendix I.The Kawasaki Riemann-Roch formula
    • 1.Todd classes
    • 2.The Equivariant Riemann-Roch Theorem
    • 3.The KawasakiRiemann-RochformulaI:finiteabelianquotients
    • 4.The KawasakiRiemann-RochformulaII:torusquotients
  • Appendix J.Cobordism invariance of the index of a transversally elliptic operator by Maxim Braverman
    • 1.The SpinC-Dirac operator and the SpinC-quantization
    • 2.The summary of the results
    • 3.Transversally elliptic operators and their indexes
    • 4.Index of the operator Ba
    • 5.The model operator
    • 6.Proof of Theorem 1
  • Bibliography
  • index

相关图书