顶部
收藏

Differential geometry and integral geometry (英文版)(微分几何与积分几何)


作者:
陈省身
定价:
79.00元
ISBN:
978-7-04-046518-1
版面字数:
310.000千字
开本:
16开
全书页数:
247页
装帧形式:
精装
重点项目:
暂无
出版时间:
2016-10-24
读者对象:
学术著作
一级分类:
自然科学
二级分类:
数学与统计
三级分类:
几何分析

分析学包括微分学与积分学。在几何中,也有对应的微分几何和积分几何。本书介绍几何的这两个方面,包含四部分。第一部分内容是1971年陈省身在国际数学家大会上所作的1小时报告,向学生和非专家介绍微分几何当时的整体面貌。作者首先简要介绍历史概况,概述了一些基本概念和工具,并介绍了当时微分几何的五个分支:正曲率流形、曲率和欧拉特征、极小子流形、等距映射、全纯映射。第二部分系统地介绍了积分几何。第三部分为微分流形,是作者在1959年微分几何正成为数学的一个主要领域时所写的讲义,该讲义给出了微分流形和微分几何的平稳和快速的引入,给当时的数学界送来一股清新之风。第四部分为积分几何,提供了一个高效但通俗易懂的介绍,并给出了对整个数学的全局的观点。 例如,除了介绍在欧氏空间中的积分几何的标准主题,它还讨论了齐次空间的积分几何。

本书不仅对初学者非常有价值,对科研工作者也是很好的补充阅读材料。 

  • 前辅文
  • Part I What is Geometry and Differential Geometry
    • 1 WhatIsGeometry?.
      • 1.1 Geometry as a logical system
      • 1.2 Coordinatization of space
      • 1.3 Space based on the group concept
      • 1.4 Localization of geometry
      • 1.5 Globalization
      • 1.6 Connections in a fiber bundle
      • 1.7 An application to biology
      • 1.8 Conclusion
    • 2 Differential Geometry
      • 2.1 Introduction
      • 2.2 The development of some fundamental notions and tools
      • 2.3 Formulation of some problems with discussion of related results
        • 2.3.1 Riemannian manifolds whose sectional curvatures keep a
        • 2.3.2 Euler-Poincar´e characteristic.
        • 2.3.3 Minimal submanifolds
        • 2.3.4 Isometricmappings
        • 2.3.5 Holomorphic mappings
  • Part II Lectures on Integral Geometry
    • 3 Lectures on Integral Geometry
      • 3.1 Lecture I
        • 3.1.1 Buffon’s needle problem
        • 3.1.2 Bertrand’s parabox
      • 3.2 Lecture II
      • 3.3 Lecture III
      • 3.4 Lecture IV
      • 3.5 LectureV
      • 3.6 LectureVI
      • 3.7 LectureVII
      • 3.8 LectureVIII
  • Part III DifferentiableManifolds
    • 4 Multilinear Algebra
      • 4.1 The tensor (or Kronecker) product
      • 4.2 Tensor spaces
      • 4.3 Symmetry and skew-symmetry
      • 4.4 Duality in exterior algebra
      • 4.5 Inner product
    • 5 DifferentiableManifolds
      • 5.1 Definition of a differentiable manifold
      • 5.2 Tangent space
      • 5.3 Tensor bundles
      • 5.4 Submanifolds
    • 6 Exterior Differential Forms
      • 6.1 Exterior differentiation
      • 6.2 Differential systems
      • 6.3 Derivations and anti-derivations
      • 6.4 Infinitesimal transformation
      • 6.5 Integration of differential forms
      • 6.6 Formula of Stokes
    • 7 Affine Connections
      • 7.1 Definition of an affine connection: covariant differential
      • 7.2 The principal bundle
      • 7.3 Groups of holonomy
      • 7.4 Affine normal coordinates
    • 8 Riemannian Manifolds
      • 8.1 The parallelismof Levi-Civita
      • 8.2 Sectional curvature
      • 8.3 Normal coordinates
      • 8.4 Gauss-Bonnet formula
      • 8.5 Completeness
      • 8.6 Manifolds of constant curvature
  • Part IV Lecture Notes on Differentiable Geometry
    • 9 Review of Surface Theory
      • 9.1 Introduction
      • 9.2 Moving frames.
      • 9.3 The connection form
      • 9.4 The complex structure
    • 10 Minimal Surfaces
      • 10.1 General theorems.
      • 10.2 Examples
      • 10.3 Bernstein -Osserman theorem
      • 10.4 Inequality on Gaussian curvature.
    • 11 Pseudospherical Surface
      • 11.1 General theorems.
      • 11.2 B¨acklund’s theorem.

相关图书