顶部
收藏

Approximate and Renormgroup Symmetries


作者:
N.H. Ibragimov,V. F. Kovalev
定价:
39.00元
ISBN:
978-7-04-025159-3
版面字数:
170.000千字
开本:
16开
全书页数:
145页
装帧形式:
精装
重点项目:
暂无
出版时间:
2009-02-15
读者对象:
学术著作
一级分类:
自然科学
二级分类:
数学与统计
三级分类:
偏微分方程

"Approximate and Renormgroup Symmetries" deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. Dr. N.H. Ibragimov is a professor at the Department of Mathematics and Science, Research Centre ALGA, Sweden. He is widely regarded as one of the world's foremost experts in the field of symmetry analysis of differential equations; Dr. V. F. Kovalev is a leading scientist at the Institute for Mathematical Modeling, Russian Academy of Science, Moscow.

  • 1 Lie Group Analysis in Outline
    • 1.1 Continuous point transformation groups
      • 1.1.1 One-parameter groups
      • 1.1.2 Infinitesimal transformations
      • 1.1.3 Lie equations
      • 1.1.4 Exponential map
      • 1.1.5 Canonical variables
      • 1.1.6 Invariants and invariant equations
    • 1.2 Symmetries of ordinary differential equations
      • 1.2.1 Frame of differential equations
      • 1.2.2 Extension of group actions to derivatives
      • 1.2.3 Generators of prolonged groups
      • 1.2.4 Definition of a symmetry group
      • 1.2.5 Main property of symmetry groups
      • 1.2.6 Calculation of infinitesimal symmetries
      • 1.2.7 An example
      • 1.2.8 Lie algebras
    • 1.3 Integration of first-order equations
      • 1.3.1 Lies integrating factor
      • 1.3.2 Method of canonical variables
    • 1.4 Integration of second-order equations
      • 1.4.1 Canonical variables in Lie algebras L2
      • 1.4.2 Integration method
    • 1.5 Symmetries of partial differential equations
      • 1.5.1 Main concepts illustrated by evolution equations
      • 1.5.2 Invariant solutions
      • 1.5.3 Group transformations of solutions
    • 1.6 Three definitions of symmetry groups
      • 1.6.1 Frame and extended frame
      • 1.6.2 First definition of symmetry group
      • 1.6.3 Second definition
      • 1.6.4 Third definition
    • 1.7 Lie-Backlund transformation groups
      • 1.7.1 Lie-Backlund operators
      • 1.7.2 Lie-Backlund equations and their integration
      • 1.7.3 Lie-Backlund symmetries
    • References
  • 2 Approximate Transformation Groups and Symmetries
    • 2.1 Approximate transformation groups
      • 2.1.1 Notation and definitions
      • 2.1.2 Approximate Lie equations
      • 2.1.3 Approximate exponential map
    • 2.2 Approximate symmetries
      • 2.2.1 Definition of approximate symmetries
      • 2.2.2 Determining equations &amp
      • 2.2.3 Calculation of approximate symmetries
      • 2.2.4 Examples of approximate symmetries
      • 2.2.5 Integration using approximate symmetries
      • 2.2.6 Integration using stable symmetries
      • 2.2.7 Approximately invariant solutions
      • 2.2.8 Approximate conservation laws (first integrals)
    • References
  • 3 Symmetries of Integro-Differential Equations
    • 3.1 Definition and infinitesimal test
      • 3.1.1 Definition of symmetry group
      • 3.1.2 Variational derivative for functionals
      • 3.1.3 Infinitesimal criterion
      • 3.1.4 Prolongation on nonlocal variables
    • 3.2 Calculation of symmetries illustrated by Vlasov-Maxwell equations
      • 3.2.1 One-dimensional electron gas
      • 3.2.2 Three-dimensional plasma kinetic equations
      • 3.2.3 Plasma kinetic equations with Lagrangian velocity
      • 3.2.4 Electron-ion plasma equations in quasi-neutral approximation
    • References
  • 4 Renormgroup Symmetries
    • 4.1 Introduction
    • 4.2 Renormgroup algorithm
      • 4.2.1 Basic manifold
      • 4.2.2 Admitted group
      • 4.2.3 Restriction of admitted group on solutions
      • 4.2.4 Renormgroup invariant solutions
    • 4.3 Examples
      • 4.3.1 Modified Burgers equation
      • 4.3.2 Example from geometrical optics
      • 4.3.3 Method based on embedding equations
      • 4.3.4 Renormgroup and differential constraints
    • References
  • 5 Applications of Renormgroup Symmetries
    • 5.1 Nonlinear optics
      • 5.1.1 Nonlinear geometrical optics
      • 5.1.2 Nonlinear wave optics
      • 5.1.3 Renormgroup algorithm using functionals
    • 5.2 Plasma physics
      • 5.2.1 Harmonics generation in inhomogeneous plasma
      • 5.2.2 Nonlinear dielectric permittivity of plasma
      • 5.2.3 Adiabatic expansion of plasma bunches
    • References
  • Index

相关图书