图书信息
图书目录

非结合代数在射影几何中的作用(影印版)


暂无简介


作者:
John R. Faulkner

定价:
99.00元

出版时间:
2025-02-14

ISBN:
978-7-04-063248-4

物料号:
63248-00

读者对象:
学术著作

一级分类:
自然科学

二级分类:
数学与统计

三级分类:
代数学

重点项目:
暂无

版面字数:
390.00千字

开本:
特殊

全书页数:
暂无

装帧形式:
精装
  • 前辅文
  • Introduction
  • Chapter 1. Affine and Projective Planes
    • §1.1. Preview
    • §1.2. Incidence geometry
    • §1.3. Affine planes
    • §1.4. Projective planes
    • §1.5. Duality
    • §1.6. Exercises
  • Chapter 2. Central Automorphisms of Projective Planes
    • §2.1. Preview
    • §2.2. Projections and automorphisms
    • §2.3. Transvections and dilatations
    • §2.4. Transitivity properties
    • §2.5. Exercises
  • Chapter 3. Coordinates for Projective Planes
    • §3.1. Preview
    • §3.2. Ternary systems
    • §3.3. Two coordinatizations related to G(C)
    • §3.4. Transvections and algebraic properties
    • §3.5. Exercises
  • Chapter 4. Alternative Rings
    • §4.1. Preview
    • §4.2. Left Moufang rings
    • §4.3. Artin’s Theorem
    • §4.4. Inverses in alternative rings
    • §4.5. The Cayley-Dickson process
    • §4.6. Composition algebras
    • §4.7. Split and division composition algebras
    • §4.8. Exercises
  • Chapter 5. Configuration Conditions
    • §5.1. Preview
    • §5.2. Desargues condition
    • §5.3. Quadrangle sections
    • §5.4. Pappus condition
    • §5.5. Configurations and central automorphisms
    • §5.6. Exercises
  • Chapter 6. Dimension Theory
    • §6.1. Preview
    • §6.2. Dimensionable sets
    • §6.3. Independence and bases
    • §6.4. Strongly dimensionable sets
    • §6.5. Exercises
  • Chapter 7. Projective Geometries
    • §7.1. Preview
    • §7.2. Projective and nearly projective geometries
    • §7.3. Relation to strongly dimensionable sets
    • §7.4. Classification of projective geometries
    • §7.5. Exercises
  • Chapter 8. Automorphisms of G(V)
    • §8.1. Preview
    • §8.2. The Fundamental Theorem
    • §8.3. Subgroups of Aut(G(V ))
    • §8.4. Simple groups
    • §8.5. Exercises
  • Chapter 9. Quadratic Forms and Orthogonal Groups
    • §9.1. Preview
    • §9.2. Quadratic forms
    • §9.3. Orthogonal groups
    • §9.4. Exercises
  • Chapter 10. Homogeneous Maps
    • §10.1. Preview
    • §10.2. Polarization of homogeneous maps
    • §10.3. Exercises
  • Chapter 11. Norms and Hermitian Matrices
    • §11.1. Preview
    • §11.2. Hermitian matrices and HEn(C)
    • §11.3. Norms on H(Cn)
    • §11.4. Transitivity of HEn(C)
    • §11.5. Trace and adjoint
    • §11.6. H(C3)
    • §11.7. Exercises
  • Chapter 12. Octonion Planes
    • §12.1. Preview
    • §12.2. The construction of octonion planes
    • §12.3. Simplicity of PHE3(O)
    • §12.4. Automorphisms of octonion planes
    • §12.5. Exercises
  • Chapter 13. Projective Remoteness Planes
    • §13.1. Preview
    • §13.2. Definition and examples
    • §13.3. Groups of Steinberg type
    • §13.4. Transvections
    • §13.5. Exercises
  • Chapter 14. Other Geometries
    • §14.1. Preview
    • §14.2. Erlangen program
    • §14.3. The geometry of R-spaces
    • §14.4. Buildings
    • §14.5. Generalized n-gons
    • §14.6. Moufang sets and structurable algebras
    • §14.7. Freudenthal-Tits magic square
    • §14.8. Exercises
  • Bibliography
  • Index