顶部
收藏

Handbook of Group Actions(群作用手册)(第 I 卷)


作者:
季理真, Papadopoulos, 丘成桐
定价:
128.00元
ISBN:
978-7-04-041363-2
版面字数:
970.000千字
开本:
16开
全书页数:
602页
装帧形式:
精装
重点项目:
暂无
出版时间:
2014-12-25
读者对象:
学术著作
一级分类:
自然科学
二级分类:
数学与统计
三级分类:
代数学

群和群作用是数学研究的重要对象,拥有强大的力量并且富于美感,这可以通过它广泛出现在诸多不同的科学领域体现出来。

此多卷本手册由相关领域专家撰写的一系列综述文章组成,首次系统地展现了群作用及其应用,内容囊括经典主题的讨论、近来的热点专业问题的论述,有些文章还涉及相关的历史。《群作用手册(第1卷)》填补了数学著作中的一项空白,适合于从初学者到相关领域专家的各个层次读者阅读。

  • 前辅文
  • Part I: Geometries and General Group Actions
    • Geometry of Singular Space
    • Shing-Tung Yau
      • 1 The development of modern geometry that influenced ourconcept of space
      • 2 Geometry of singular spaces
      • 3 Geometry for Einstein equation and special holonomy group
      • 4 The Laplacian and the construction of generalized Riemanniangeometry in terms of operators
      • 5 Differential topology of the operator geometry
      • 6 Inner product on tangent spaces and Hodge theory
      • 7 Gauge groups, convergence of operator manifolds and Yang-Millstheory
      • 8 Generalized manifolds with special holonomy groups
      • 9 Maps, subspaces and sigmamodels
      • 10 Noncompactmanifolds
      • 11 Discrete spaces
      • 12 Conclusion
      • 13 Appendix
    • References
    • A Summary of Topics Related to Group Actions
    • Lizhen Ji
      • 1 Introduction
      • 2 Different types of groups
      • 3 Different types of group actions
      • 4 How do group actions arise
      • 5 Spaces which support group actions
      • 6 Compact transformation groups
      • 7 Noncompact transformation groups
      • 8 Quotient spaces of discrete group actions
      • 9 Quotient spaces of Lie groups and algebraic group actions
      • 10 Understanding groups via actions
      • 11 How to make use of symmetry
      • 12 Understanding and classifying nonlinear actions of groups
      • 13 Applications of finite group actions in combinatorics
      • 14 Applications in logic
      • 15 Groups and group actions in algebra
      • 16 Applications in analysis
      • 17 Applications in probability
      • 18 Applications in number theory
      • 19 Applications in algebraic geometry
      • 20 Applications in differential geometry
      • 21 Applications in topology
      • 22 Group actions and symmetry in physics
      • 23 Group actions and symmetry in chemistry
      • 24 Symmetry in biology and the medical sciences
      • 25 Group actions and symmetry in material science and engineering
      • 26 Symmetry in arts and architecture
      • 27 Group actions and symmetry in music
      • 28 Symmetries in chaos and fractals
      • 29 Acknowledgements and references
    • References
  • Part II: Mapping Class Groups and Teichm¨uller Spaces Actions of Mapping Class Groups
    • Athanase Papadopoulos
      • 1 Introduction
      • 2 Rigidity and actions ofmapping class groups
      • 3 Actions on foliations and laminations
      • 4 Some perspectives
    • References
    • The Mapping Class Group Action on the Horofunction Compactification of Teichm¨uller Space
    • Weixu Su
      • 1 Introduction
      • 2 Background
      • 3 Thurston’s compactification of Teichm¨uller space
      • 4 Compactification of Teichm¨uller space by extremal length
      • 5 Analogies between the Thurston metric and the Teichm¨uller metric
      • 6 Detour cost and Busemann points
      • 7 The extended mapping class group as an isometry group
      • 8 On the classification of mapping class actions on Thurston’s metric
      • 9 Some questions
    • References
    • Schottky Space and Teichm¨uller Disks
    • Frank Herrlich
      • 1 Introduction
      • 2 Schottky coverings
      • 3 Schottky space
      • 4 Schottky and Teichm¨uller space
      • 5 Schottky space as amoduli space
      • 6 Teichm¨uller disks
      • 7 Veech groups
      • 8 Horizontal cut systems
      • 9 Teichm¨uller disks in Schottky space
    • References
    • Topological Characterization of the Asymptotically Trivial Mapping Class Group
    • Ege Fujikawa
      • 1 Introduction
      • 2 Preliminaries
      • 3 Discontinuity of the Teichm¨uller modular group action
      • 4 The intermediate Teichm¨uller space
      • 5 Dynamics of the Teichm¨uller modular group
      • 6 A fixed point theorem for the asymptotic Teichm¨uller modular group
      • 7 Periodicity of asymptotically Teichm¨uller modular transformation
    • References
    • The Universal Teichm¨uller Space and Diffeomorphisms of the Circle with H¨older Continuous Derivatives
    • Katsuhiko Matsuzaki
      • 1 Introduction
      • 2 Quasisymmetric automorphisms of the circle
      • 3 The universal Teichm¨uller space
      • 4 Quasisymmetric functions on the real line
      • 5 Symmetric automorphisms and functions
      • 6 The small subspace
      • 7 Diffeomorphisms of the circle with H¨older continuous derivatives
      • 8 The Teichm¨uller space of circle diffeomorphisms
    • References
    • On the Johnson Homomorphisms of the Mapping Class Groups of urfaces
      • Takao Satoh
      • 1 Introduction
      • 2 Notation and conventions
      • 3 Mapping class groups of surfaces
      • 4 Johnson homomorphisms of Aut Fn
      • 5 Johnson homomorphisms of Mg,1
      • 6 Some other applications of the Johnson homomorphisms
      • Acknowledgements
    • References
  • Part III: Hyperbolic Manifolds and Locally Symmetric Spaces The Geometry and Arithmetic of Kleinian Groups
    • Gaven JMartin
      • 1 Introduction
      • 2 The volumes of hyperbolic orbifolds
      • 3 The Margulis constant for Kleinian groups
      • 4 The general theory
      • 5 Basic concepts
      • 6 Two-generator groups
      • 7 Polynomial trace identities and inequalities
      • 8 Arithmetic hyperbolic geometry
      • 9 Spaces of discrete groups, p, q ∈ {3, 4, 5}
      • 10 (p, q, r)-Kleinian groups
    • References
    • Weakly Commensurable Groups, with Applications to Differential Geometry
    • Gopal Prasad and Andrei SRapinchuk
      • 1 Introduction
      • 2 Weakly commensurable Zariski-dense subgroups
      • 3 Results on weak commensurability of S-arithmetic groups
      • 4 Absolutely almost simple algebraic groups having the same maximal tori
      • 5 A finiteness result
      • 6 Back to geometry
      • Acknowledgements
    • References
  • Part IV: Knot Groups
    • Representations of Knot Groups into SL(2,C) and Twisted Alexander Polynomials
    • Takayuki Morifuji
      • 1 Introduction
      • 2 Alexander polynomials
      • 3 Representations of knot groups into SL(2,C)
      • 4 Deformations of representations of knot groups
      • 5 Twisted Alexander polynomials
      • 6 Twisted Alexander polynomials of hyperbolic knots
      • Acknowledgements
    • References
    • Meridional and Non-meridional Epimorphisms between Knot Groups
    • Masaaki Suzuki
      • 1 Introduction
      • 2 Some relations on the set of knots
      • 3 Twisted Alexander polynomial and epimorphism
      • 4 Meridional epimorphisms
      • 5 Non-meridional epimorphisms
      • 6 Therelation≥ on the set of prime knots
      • 7 Simon’s conjecture and other problems
      • Acknowledgements
    • References

相关图书