顶部
收藏

流固耦合动力学—— 理论,变分原理,数值方法及应用(英文版)


作者:
Jing Tang Xing (邢景棠) 著
定价:
269.00元
ISBN:
978-7-04-055594-3
版面字数:
1630.000千字
开本:
16开
全书页数:
暂无
装帧形式:
精装
重点项目:
暂无
出版时间:
2021-04-15
读者对象:
学术著作
一级分类:
自然科学
二级分类:
力学
三级分类:
流体力学

暂无
  • 前辅文
  • 1. Introduction
    • 1.1 Fluid-solid interaction dynamics and its characteristics
    • 1.2 Fluid-solid interaction problems in engineering
    • 1.3 Solution approaches to fluid-solid interaction problems
      • 1.3.1 Approximate solution with no fluid-solid interaction
      • 1.3.2 Quasicoupling approximation method
      • 1.3.3 Solution of integrated coupling fields
    • 1.4 Approaches to deriving numerical equations
      • 1.4.1 Problem and its governing equations
      • 1.4.2 Analytical solution
      • 1.4.3 Variational formulations and Rayleigh-Ritz method
      • 1.4.4 Finite element method
      • 1.4.5 Weighted residual methods
      • 1.4.6 Finite difference method
    • 1.5 Short historical review on fluid-solid interaction
      • 1.5.1 Terms of fluid-solid interaction and its subdisciplines in literatures
      • 1.5.2 Historical remarkable events and progress on fluid-solid interaction
      • 1.5.3 World-recognized conferences
      • 1.5.4 Influential review papers
      • 1.5.5 Important books on fluid-solid interaction
    • 1.6 Main aim and characteristics of this book
    • 1.7 Suggestions how to choose some contents as lecture notes
  • 2. Cartesian tensor and matrix calculus
    • 2.1 Cartesian tensor
      • 2.1.1 Vector
      • 2.1.2 Summation convention
      • 2.1.3 Kronecker delta
      • 2.1.4 Permutation symbol
      • 2.1.5 e-δ Identity
      • 2.1.6 Differentiation of a function f(x1,x2,x3)
      • 2.1.7 Transformation of coordinates
      • 2.1.8 Tensor
      • 2.1.9 Quotient rule
      • 2.1.10 Index forms of some important variables
      • 2.1.11 Two primary identities
    • 2.2 Matrix calculus
      • 2.2.1 Types of matrix derivatives
      • 2.2.2 Derivatives with vectors
      • 2.2.3 Derivatives with matrices
      • 2.2.4 Identities
    • 2.3 Exercise problems
      • 2.3.1 Problem 1: prove the following formulations
      • 2.3.2 Problem 2: prove the identity of three arbitrary vectors
      • 2.3.3 Problem 3: express the constitutive equation in a tensor form
      • 2.3.4 Problem 4: write the tensor equation in a coordinate (xyz) form
      • 2.3.5 Problem 5: prove the following identities using index notations
      • 2.3.6 Problem 6: prove eijkaiajbk=0 for nonzero vectors a and b
  • 3. Fundamentals of continuum mechanics
    • 3.1 Descriptions of the motion of a continuum
      • 3.1.1 Material frame of reference
      • 3.1.2 Spatialf rame of reference
      • 3.1.3 Arbitrary Lagrange Euler frame of reference
      • 3.1.4 Updated Lagrangian system
      • 3.1.5 Updated arbitrary Lagrange Euler system
    • 3.2 Analysis of deformation
      • 3.2.1 Displacement and strain
      • 3.2.2 Velocity field and rate of deformation of fluids
    • 3.3 Stress tensor
      • 3.3.1 Cauchy's stress
      • 3.3.2 Piola-Kirchhoff stress
    • 3.4 Constitutive equation
      • 3.4.1 Solids
      • 3.4.2 Fluids
    • 3.5 Laws of conservation
      • 3.5.1 Green theorem
      • 3.5.2 Material derivatives of volume integral with mass density
      • 3.5.3 Material derivatives of arbitrary integrands in a spatial system
      • 3.5.4 Material derivatives of arbitrary integrands in the arbitrary Lagrange Euler system
      • 3.5.5 General forms of the conservation laws
      • 3.5.6 Jump condition and equation
      • 3.5.7 Conservation of mass and the equation of continuity
      • 3.5.8 Conservation of momentum and equations of motion
      • 3.5.9 Conservation of energy and equation of energy
    • 3.6 Navier-Stokes equations and boundary conditions
      • 3.6.1 Displacement solution of solid mechanics
      • 3.6.2 Velocity-pressure solution equations of fluid mechanics
      • 3.6.3 Bernoulli equation and potential flows
      • 3.6.4 Linear waves in fluids
  • 4. Variational principles of linear fluid-solid interaction systems
    • 4.1 Short review on historic background
    • 4.2 Fluid-solid interaction problems and interaction conditions
      • 4.2.1 Geometric and dynamic conditions on material interfaces
      • 4.2.2 Interactions on nonfloating fluid-solid interaction interface
      • 4.2.3 Interaction on floating fluid-solid interaction interface
      • 4.2.4 Interactions on air-liquid interface
      • 4.2.5 Conditions of surface-tension interactions
      • 4.2.6 Boundary conditions on infinity and moving structures
    • 4.3 A complementary energy model: pressure-acceleration form
      • 4.3.1 Governing equations
      • 4.3.2 Variational formulation
    • 4.4 A potential-energy model: displacement-velocity potential form
      • 4.4.1 Governing equations
      • 4.4.2 Variational formulation
    • 4.5 Mixed energy models: displacement-pressure and acceleration-velocity potential forms
      • 4.5.1 Displacement-pressure form
      • 4.5.2 Acceleration-velocity potential form
    • 4.6 Three field variational formulations
      • 4.6.1 Displacement-pressure-velocity potential form
      • 4.6.2 Displacement-acceleration-pressure form
    • 4.7 Formulations with displacement potential or pressure impulse as a variable
      • 4.7.1 Displacement-potential form
      • 4.7.2 Pressure impulse form
    • 4.8 Variational formulations for dissipative systems
      • 4.8.1 Damping types
      • 4.8.2 Virtual variational formulations
      • 4.8.3 Complex variational formulation
    • 4.9 Variational formulations for pipes conveying fluid
      • 4.9.1 Description and assumptions of the problem
      • 4.9.2 Variational formulation
      • 4.9.3 Variational stationary conditions for governing equations
      • 4.9.4 Natural vibrations and first approximate frequency
  • 5. Solutions of some linear fluid-solid interaction problems
    • 5.1 One-dimensional problems
      • 5.1.1 Dynamic response of one-dimensional fluid-solid interaction system to a pressure wave
      • 5.1.2 A mass-spring system coupled to a one-dimensional infinite fluid domain
      • 5.1.3 Dynamic response of a Sommerfeld system
      • 5.1.4 Natural vibration of an fluid-solid interaction system with free surface wave
      • 5.1.5 Natural vibration of a vertical system with a floating fluid-solid interaction interface
    • 5.2 Two dimensional problems
      • 5.2.1 Sloshing modes of a two dimensional rectangular water container
      • 5.2.2 Radiations of mixed compressive and gravity waves
      • 5.2.3 Dam-water pond excited by earthquake
      • 5.2.4 Beam-water interaction
    • 5.3 Three-dimensional problems
      • 5.3.1 Vibrations of a floating rigid mass on the water
      • 5.3.2 A water-sphericalshell-damping layer interaction system
  • 6. Preliminaries of waves
    • 6.1 d'Alembert's solution, dispersive, dissipation
      • 6.1.1 d'Alembert's solution
      • 6.1.2 Dispersive wave
      • 6.1.3 Dissipation wave
    • 6.2 Nonlinear waves
      • 6.2.1 A nonlinear wave and its characteristic solution
      • 6.2.2 Burgers' equation
      • 6.2.3 Korteweg-de Vries equation
      • 6.2.4 Generalized nonlinear water wave equation
      • 6.2.5 Analytical solutions of nonlinear wave equations
    • 6.3 Linear water waves
      • 6.3.1 Three-dimensional water waves
      • 6.3.2 Plane water wave
      • 6.3.3 Approximate theory for long waves
  • 7. Finite element models for linear fluid-structure interaction problems
    • 7.1 Introduction on finite element models for linear fluid-structure interaction
    • 7.2 Displacement-velocity potential finite element model
      • 7.2.1 Description of the problem
      • 7.2.2 Governing equations
      • 7.2.3 Variational formulation
      • 7.2.4 Finite element equations
      • 7.2.5 Natural vibration
      • 7.2.6 Examples
    • 7.3 Mixed finite element displacement-pressure model
      • 7.3.1 General description of the problem
      • 7.3.2 Variational formulation
      • 7.3.3 Mixed finite element model
      • 7.3.4 Symmetric matrix equations and approximations
      • 7.3.5 Effect of solid/fluid natural frequencies on fluid-structure interaction process
    • 7.4 Substructure-subdomain approaches
      • 7.4.1 Variational formulations in substructure-subdomain form
      • 7.4.2 Displacement consistency model for solid substructure
      • 7.4.3 Hybrid displacement model of solid substructure
      • 7.4.4 Pressure equilibrium model of fluid domain
      • 7.4.5 Mixed model of substructure-subdomain
      • 7.4.6 Special techniques for fluid-structure interaction systems
      • 7.4.7 A simple example: one-dimensional fluid-structure interaction problem
      • 7.4.8 Computer code design
      • 7.4.9 Application examples
  • 8. Mixed finite element-boundary element model for linear water-structure interactions
    • 8.1 Formulation of the boundary element method
      • 8.1.1 Fundamental solution of Laplace equation
      • 8.1.2 Formulation of boundary integral equation
    • 8.2 Mixed finite element-boundary element method for very large floating structure subjected to airplane landing impacts
      • 8.2.1 Introduction
      • 8.2.2 General description of the problem
      • 8.2.3 Governing equations
      • 8.2.4 Mixed finite element-boundary element method
    • 8.3 Finite element-boundary element modeling for dynamic response of structures excited by incident water waves
      • 8.3.1 General description of the problem and governing equations
      • 8.3.2 Solution approach
      • 8.3.3 Variational formulation
      • 8.3.4 Mixed finite element-boundary element equations
    • 8.4 Mirrorimage method for acoustic radiations of underwater structures
      • 8.4.1 Green functions of Helmholtz equation
      • 8.4.2 Green identity
      • 8.4.3 Acoustic radiation in infinite fluid domain
      • 8.4.4 Generalized acoustic radiation problems
  • 9. Hydroelasticity theory of ship-water interactions
    • 9.1 Fundamentals for ship-water interactions
      • 9.1.1 Frames of reference
      • 9.1.2 Governing equations
      • 9.1.3 Equations for static equilibrium state
      • 9.1.4 Equations for steady motion
    • 9.2 Incident waves
      • 9.2.1 Equation of incident water waves
      • 9.2.2 Linear plane gravity waves
      • 9.2.3 Frequency ofwave encounter
    • 9.3 Linear hydroelasticity theory
      • 9.3.1 Linearized governing equations
      • 9.3.2 Equations in the modal space
      • 9.3.3 Numerical solutions
      • 9.3.4 Examples
  • 10. Variational principles for nonlinear fluid-solid interactions
    • 10.1 A short review on variational principles for nonlinear dynamical systems
    • 10.2 Fundamental variational concepts for nonlinear systems
      • 10.2.1 The motion of a continuum
      • 10.2.2 Translation and transmission velocities of a curved surface
      • 10.2.3 Time derivative of an integral over a moving volume in space
      • 10.2.4 local variation and a material variation
      • 10.2.5 Local variation of an integral over a moving volume in space
    • 10.3 Governing equations
      • 10.3.1 Solid domain
      • 10.3.2 Fluid domain
      • 10.3.3 Fluid-structure interface
      • 10.3.4 Variational conditions at initial time t1 and final time t2
    • 10.4 Variational principles
      • 10.4.1 Fluid motion assumed rotational
      • 10.4.2 Fluid flow assumed irrotational
      • 10.4.3 Discussion
    • 10.5 Two simple examples of applications
      • 10.5.1 A one-dimensional water-mass-spring interaction problem
      • 10.5.2 A forced one-dimensional gas-mass-spring dynamic interaction problem
    • 10.6 Variational principles for nonlinear elastic ship-water interactions
      • 10.6.1 Short introduction
      • 10.6.2 Governing equations in the moving reference frame
      • 10.6.3 Variational formulations in the moving reference frame
      • 10.6.4 Rigid ship dynamics
      • 10.6.5 Offshore and hydroelastic examples
  • 11. Mixed finite element-computational fluid dynamics method for nonlinear fluid-solid interactions
    • 11.1 Updated Lagrangian formulation in finite element methods
      • 11.1.1 Principle of virtual work and dynamic equilibrium equations
      • 11.1.2 Expression of stress virtual work
      • 11.1.3 Total Lagrangian formulation in solid dynamics
      • 11.1.4 Updated Lagrangian formulation in solid dynamics
      • 11.1.5 Solution of nonlinear equations
      • 11.1.6 A one-dimensional example
    • 11.2 Updated arbitrary Lagrangian-Eulerian formulationsin computational fluid dynamics
      • 11.2.1 History and development of arbitrary Lagrangian-Eulerian description
      • 11.2.2 Basic discretization techniques of computational fluid dynamics
      • 11.2.3 Consistency, stability, and convergence of numerical schemes
      • 11.2.4 Updated arbitrary Lagrangian-Eulerian formulations in finite difference method and finite volume method
    • 11.3 Mixed finite element-computational fluid dynamics solutions for nonlinear fluid-solid interaction problems
      • 11.3.1 Direct or simultaneous integration
      • 11.3.2 Partitioned iteration
      • 11.3.3 A simple example
    • 11.4 Numerical examples by the mixed finite element-finite difference method
      • 11.4.1 Description of nonlinear rigid body-water fluid-solid interaction systems
      • 11.4.2 Arbitrary Lagrangian-Eulerian description of the water motion
      • 11.4.3 Numerical formulations
      • 11.4.4 A fluid-mass-spring interaction system
      • 11.4.5 A spring-supported fluid-rigid-dam interaction system
      • 11.4.6 Two-dimensional rigid body floatingin a free-surface fluid
      • 11.4.7 Prescribed motion of a rigid cylinder floating in the water
      • 11.4.8 Flows around a bluff body
  • 12. Mixed finite element-smoothed particle methods for nonlinear fluid-solid interactions
    • 12.1 Introduction
      • 12.1.1 Limitations of grid-based methods for violent flows
      • 12.1.2 Key ideas of meshfree particle methods
      • 12.1.3 History and developments with applications
    • 12.2 Fundamentals of smoothed particle hydrodynamics
      • 12.2.1 Smoothed particle hydrodynamics interpolations
      • 12.2.2 Particle approximation
      • 12.2.3 Construction ofsmoothing functions
      • 12.2.4 Smoothed particle hydrodynamics formulation for Navier-Stokes equations
      • 12.2.5 Numerical techniques for fluid flows
      • 12.2.6 Improved methods based on smoothed particle hydrodynamics
    • 12.3 Meshfree Galerkin methods
      • 12.3.1 Moving least square representing kernel interpolant
      • 12.3.2 Shepard interpolant
      • 12.3.3 Orthogonal basis for local approximations
      • 12.3.4 Applications of the moving least square reproducing kernels
    • 12.4 Mixed finite element-smoothed particle method for fluid-solid interaction problems
      • 12.4.1 Generalized solution procedure
      • 12.4.2 Modeling offluid-solid interaction involving large rigid motions with small elastic deformation
      • 12.4.3 Application examples
  • Appendix: Numerical methods solving finite element dynamic equations
  • Bibliography
  • Index

相关图书