顶部
收藏

Keller-Box 方法及其应用(英文版)


作者:
K. Vajravelu, K. V. Prasad
定价:
89.00元
ISBN:
978-7-04-038891-6
版面字数:
460.000千字
开本:
16开
全书页数:
401页
装帧形式:
精装
重点项目:
暂无
出版时间:
2014-04-23
读者对象:
学术著作
一级分类:
自然科学
二级分类:
力学
三级分类:
流体力学

本书旨在帮助需要从事英文写作与演讲的科研人员和大学生、研究生了解关于科技英语写作的方方面面,尤其是数学文章写作的基本常识和注意事项。写作中参考了西方学者关于英文数学写作的观点,并揉合了作者自己的观念、认识及经验。阅读本书对初学者尤其会有帮助。

全书内容包括:数学文章的结构,数学文章的词句,怎样修改文章,文章投稿,怎样写书,数学综合写作,其它文体的书写,怎样讲数学。

  • Front Matter
  • Chapter 0 Introduction
    • References
  • Chapter 1 Basics of the Finite Difference Approximations
    • 1.1 Finite difference approximations
    • 1.2 The initial value problem for ODEs
    • 1.3 Some basic numerical methods
    • 1.4 Some basic PDEs
    • 1.5 Numerical solution to partial differential equations
    • References
  • Chapter 2 Principles of the Implicit Keller-box Method
    • 2.1 Principles of implicit finite difference methods
    • 2.2 Finite difference methods
    • 2.3 Boundary value problems in ordinary differentialequations
    • References
  • Chapter 3 Stability and Convergence of the Implicit Keller-box Method
    • 3.1 Convergence of implicit difference methods for parabolic functional differential equations
      • 3.1.1 Introduction
      • 3.1.2 Discretization of mixed problems
      • 3.1.3 Solvability of implicit difference functional problems
      • 3.1.4 Approximate solutions of difference functional problems
      • 3.1.5 Convergence of implicit difference methods
      • 3.1.6 Numerical examples
    • 3.2 Rate of convergence of finite difference scheme on uniform/non-uniform grids
      • 3.2.1 Introduction
      • 3.2.2 Analytical results
      • 3.2.3 Numerical results
    • 3.3 Stability and convergence of Crank-Nicholson method for fractional advection dispersion equation
      • 3.3.1 Introduction
      • 3.3.2 Problem formulation
      • 3.3.3 Numerical formulation of the Crank-Nicholson method
      • 3.3.4 Stability of the Crank-Nicholson method
      • 3.3.5 Convergence
      • 3.3.6 Radial flow problem
      • 3.3.7 Conclusions
    • References
  • Chapter 4 Application of the Keller-box Method to Boundary Layer Problems
    • 4.1 Flow of a power-law fluid over a stretching sheet
      • 4.1.1 Introduction
      • 4.1.2 Formulation of the problem
      • 4.1.3 Numerical solution method
      • 4.1.4 Results and discussion
      • 4.1.5 Concluding remarks
    • 4.2 Hydromagnetic flow of a power-law fluid over a stretching sheet
      • 4.2.1 Introduction
      • 4.2.2 Flow analysis
      • 4.2.3 Numerical solution method
      • 4.2.4 Results and discussion
    • 4.3 MHD Power-law fluid flow and heat transfer over a non-isothermal stretching sheet
      • 4.3.1 Introduction
      • 4.3.2 Governing equations and similarity analysis
      • 4.3.3 Heat transfer
      • 4.3.4 Numerical procedure
      • 4.3.5 Results and discussion
    • 4.4 MHD flow and heat transfer of a Maxwell fluid over a non-isothermal stretching sheet
      • 4.4.1 Introduction
      • 4.4.2 Mathematical formulation
      • 4.4.3 Heat transfer analysis
      • 4.4.4 Numerical procedure
      • 4.4.5 Results and discussion
      • 4.4.6 Conclusions
    • 4.5 MHD boundary layer flow of a micropolar fluid past a wedge with constant wall heat flux
      • 4.5.1 Introduction
      • 4.5.2 Flow analysis
      • 4.5.3 Flat plate problem
      • 4.5.4 Results and discussion
      • 4.5.5 Conclusions
    • References
  • Chapter 5 Application of the Keller-box Method to Fluid Flow and Heat Transfer Problems
    • 5.1 Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet
      • 5.1.1 Introduction
      • 5.1.2 Mathematical formulation
      • 5.1.3 Solution of the problem
      • 5.1.4 Results and discussion
      • 5.1.5 Conclusions
    • 5.2 Convection flow and heat transfer of a Maxwell fluid over a non-isothermal surface
      • 5.2.1 Introduction
      • 5.2.2 Mathematical formulation
      • 5.2.3 Skin friction
      • 5.2.4 Nusselt number
      • 5.2.5 Results and discussion
      • 5.2.6 Conclusion
    • 5.3 The effects of variable fluid properties on the hydromagnetic flow and heat transfer over a nonlinearly stretching shee
      • 5.3.1 Introduction
      • 5.3.2 Mathematical formulation
      • 5.3.3 Numerical procedure
      • 5.3.4 Results and discussion
      • 5.3.5 Conclusions
    • 5.4 Hydromagnetic flow and heat transfer of a non-Newtonian power law fluid over a vertical stretching sheet
      • 5.4.1 Introduction
      • 5.4.2 Mathematical formulation
      • 5.4.3 Numerical procedure
      • 5.4.4 Results and discussion
    • 5.5 The effects of linear/nonlinear convection on the non-Darcian flow and heat transfer along a permeable vertical surface
      • 5.5.1 Introduction
      • 5.5.2 Mathematical formulation
      • 5.5.3 Numerical procedure
      • 5.5.4 Results and discussion
    • 5.6 Unsteady flow and heat transfer in a thin film of Ostwald-de Waele liquid over a stretching surface
      • 5.6.1 Introduction
      • 5.6.2 Mathematical formulation
      • 5.6.3 Numerical procedure
      • 5.6.4 Results and discussion
      • 5.6.5 Conclusions
    • References
  • Chapter 6 Application of the Keller-box Method to More Advanced Problems
    • 6.1 Heat transfer phenomena in a moving nanofluid over a horizontal surface
      • 6.1.1 Introduction
      • 6.1.2 Mathematical formulation
      • 6.1.3 Similarity equations
      • 6.1.4 Numerical procedure
      • 6.1.5 Results and discussion
      • 6.1.6 Conclusion
    • 6.2 Hydromagnetic fluid flow and heat transfer at astretching sheet with fluid-particle suspension and variable fluid properties
      • 6.2.1 Introduction
      • 6.2.2 Mathematical formulation
      • 6.2.3 Solution for special cases
      • 6.2.4 Analytical solution by perturbation
      • 6.2.5 Numerical procedure
      • 6.2.6 Results and discussion
      • 6.2.7 Conclusions
    • 6.3 Radiation effects on mixed convection over a wedge embedded in a porous medium filled with a nanofluid
      • 6.3.1 Introduction
      • 6.3.2 Problem formulation
      • 6.3.3 Numerical method and validation
      • 6.3.4 Results and discussion
      • 6.3.5 Conclusion
    • 6.4 MHD mixed convection flow over a permeable non-isothermal wedge
      • 6.4.1 Introduction
      • 6.4.2 Mathematical formulation
      • 6.4.3 Numerical procedure
      • 6.4.4 Results and discussion
      • 6.4.5 Concluding remarks
    • 6.5 Mixed convection boundary layer flow about a solid sphere with Newtonian heating
      • 6.5.1 Introduction
      • 6.5.2 Mathematical formulation
      • 6.5.3 Solution procedure
      • 6.5.4 Results and discussion
      • 6.5.5 Conclusions
    • 6.6 Flow and heat transfer of a viscoelastic fluid over a flat plate with a magnetic field and a pressure gradient
      • 6.6.1 Introduction
      • 6.6.2 Governing equations
      • 6.6.3 Results and discussion
      • 6.6.4 Conclusions
    • References
  • Subject Index
  • Author Index
  • 版权

相关图书