顶部
收藏

李群分析在地球物理流体动力学中的应用


作者:
Ranis Ibragimov,Nail Ibragimov
定价:
59.00元
ISBN:
978-7-04-031954-5
版面字数:
240.000千字
开本:
16开
全书页数:
215页
装帧形式:
精装
重点项目:
暂无
出版时间:
2011-04-25
物料号:
31954-00
读者对象:
学术著作
一级分类:
自然科学
二级分类:
数学与统计
三级分类:
数学应用

《李群分析在地球物理流体动力学中的应用(英文版)》是第一本将李群分析应用于深海内波的传播,并提出了一种新的方法来描述深海非线性波的相互作用的著 作。《李群分析在地球物理流体动力学中的应用(英文版)》的主题思想是通过李群分析来探究深海波动问题,书中提供了非常灵活易懂的内容,涵盖多个研究方 向,其目的是吸引更多的物理学家和数学家利用李群的对称性分析研究非线性物理问题。

《李群分析在地球物理流体动力学中的应用(英文版)》可供对利用李群分析研究物理、工程和自然科学感兴趣的专家及教授参考,也可作为应用数学、物理及工程学专业的研究生关于非线性微分方程的对称性应用课程的教材。

  • Front Matter
  • Part I InternalWaves in Stratified Fluid
  • 1 Introduction
  • 2 Governing Equations
    • 2.1 Stratification
    • 2.2 Linear model for small disturbances
      • 2.2.1 Linearization of the boundary conditions
      • 2.2.2 Linear boundary value problem
    • 2.3 The Boussinesq approximation for nonlinear internal waves in continuously stratified ocean
      • 2.3.1 Two-dimensional nonlinear Boussinesq equations
      • 2.3.2 Dispersion relation and anisotropic property of internal waves
  • 3 Two Model Examples
    • 3.1 Generation of internal waves
      • 3.1.1 Harmonic tidal flow over a corrugated slope
      • 3.1.2 Discussion about the radiation condition
    • 3.2 Reflection of internal waves from sloping topography
      • 3.2.1 The problem of internal waves impinging on a sloping bottom
      • 3.2.2 Direct answer to the question
      • 3.2.3 Latitude anomaly as an alternative answer
  • Part II Introduction to Lie Group Analysis
  • 4 Calculus of Differential Algebra
    • 4.1 Definitions
      • 4.1.1 Main variables
      • 4.1.2 Total differentiations
      • 4.1.3 Differential functions
      • 4.1.4 Euler-Lagrange operator
    • 4.2 Properties
      • 4.2.1 Divergence test
      • 4.2.2 One-dimensional case
    • 4.3 Exact equations
      • 4.3.1 Definition
      • 4.3.2 First-order equations
      • 4.3.3 Second-order equations
      • 4.3.4 Linear second-order equations
    • 4.4 Change of variables in the space A
      • 4.4.1 One independent variable
      • 4.4.2 Several independent variables
  • 5 Transformation Groups
    • 5.1 Preliminaries
      • 5.1.1 Examples from elementary mathematics
      • 5.1.2 Examples from physics
      • 5.1.3 Examples from fluid mechanics
    • 5.2 One-parameter groups
      • 5.2.1 Introduction of transformation groups
      • 5.2.2 Local one-parameter groups
      • 5.2.3 Local groups in canonical parameter
    • 5.3 Infinitesimal description of one-parameter groups
      • 5.3.1 Infinitesimal transformation
      • 5.3.2 Lie equations
      • 5.3.3 Exponential map
    • 5.4 Invariants and invariant equations
      • 5.4.1 Invariants
      • 5.4.2 Invariant equations
      • 5.4.3 Canonical variables
      • 5.4.4 Construction of groups using canonical variables
      • 5.4.5 Frequently used groups in the plane
  • 6 Symmetry of Differential Equations
    • 6.1 Notation
      • 6.1.1 Differential equations
      • 6.1.2 Transformation groups
    • 6.2 Prolongation of group generators
      • 6.2.1 Prolongation with one independent variable
      • 6.2.2 Several independent variables
    • 6.3 Definition of symmetry groups
      • 6.3.1 Definition and determining equations
      • 6.3.2 Construction of equations with given symmetry
      • 6.3.3 Calculation of infinitesimal symmetry
    • 6.4 Lie algebra
      • 6.4.1 Definition of Lie algebra
      • 6.4.2 Examples of Lie algebra
      • 6.4.3 Invariants of multi-parameter groups
      • 6.4.4 Lie algebra L2 in the plane: Canonical variables
      • 6.4.5 Calculation of invariants in canonical variables
  • 7 Applications of Symmetry
    • 7.1 Ordinary differential equations
      • 7.1.1 Integration of first-order equations
      • 7.1.2 Integration of second-order equations
    • 7.2 Partial differential equations
      • 7.2.1 Symmetry of the Burgers equation
      • 7.2.2 Invariant solutions
      • 7.2.3 Group transformations of solutions
    • 7.3 From symmetry to conservation laws
      • 7.3.1 Introduction
      • 7.3.2 Noether’s theorem
      • 7.3.3 Theorem of nonlocal conservation laws
  • Part III Group Analysis of InternalWaves
  • 8 Generalities
    • 8.1 Introduction
      • 8.1.1 Basic equations
      • 8.1.2 Adjoint system
      • 8.1.3 Formal Lagrangian
    • 8.2 Self-adjointness of basic equations
      • 8.2.1 Adjoint system to basic equations
      • 8.2.2 Self-adjointness
    • 8.3 Symmetry
      • 8.3.1 Obvious symmetry
      • 8.3.2 General admitted Lie algebra
      • 8.3.3 Admitted Lie algebra in the case f0
  • 9 Conservation Laws
    • 9.1 Introduction
      • 9.1.1 General discussion of conservation equations
      • 9.1.2 Variational derivatives of expressions with Jacobians
      • 9.1.3 Nonlocal conserved vectors
      • 9.1.4 Computation of nonlocal conserved vectors
      • 9.1.5 Local conserved vectors
    • 9.2 Utilization of obvious symmetry
      • 9.2.1 Translation of v
      • 9.2.2 Translation of r
      • 9.2.3 Translation of y
      • 9.2.4 Derivation of the flux of conserved vectors with known densities
      • 9.2.5 Translation of x
      • 9.2.6 Time translation
      • 9.2.7 Conservation of energy
    • 9.3 Use of semi-dilation
      • 9.3.1 Computation of the conserved density
      • 9.3.2 Conserved vector
    • 9.4 Conservation law due to rotation
    • 9.5 Summary of conservation laws
      • 9.5.1 Conservation laws in integral form
      • 9.5.2 Conservation laws in differential form
  • 10 Group Invariant Solutions
    • 10.1 Use of translations and dilation
      • 10.1.1 Construction of the invariant solution
      • 10.1.2 Generalized invariant solution and wave beams
      • 10.1.3 Energy of the generalized invariant solution
      • 10.1.4 Conserved density P of the generalized invariant solution
    • 10.2 Use of rotation and dilation
      • 10.2.1 The invariants
      • 10.2.2 Candidates for the invariant solution
      • 10.2.3 Construction of the invariant solution
      • 10.2.4 Qualitative analysis of the invariant solution
      • 10.2.5 Energy of the rotationally symmetric solution
      • 10.2.6 Comparison with linear theory
    • 10.3 Concluding remarks
  • A Resonant Triad Model
    • A.1 Weakly nonlinear model
    • A.2 Two questions
    • A.3 Solutions to the resonance conditions
    • A.4 Resonant triad model
      • A.4.1 Utilization of the GM spectrum
      • A.4.2 Model example: Energy conservation for two resonant triads
      • A.4.3 Model example: Resonant interactions between 20 000 internal waves
    • A.5 Stability of the GM spectrum and open question on dissipation modelling
  • References
  • Index

相关图书