本书是“现代数学基础”系列中的一本。
现代科学的发展,对概率论提出了越来越高的要求。经典的极限理论以研究随机变量序列部分和序列的极限性状为己任,近代极限理论则主要研究部分和过程向布朗运动的强弱逼近。然而,随着概率论与其他学科的交叉,所产生出的许多复杂的随机结构,远远不是用“部分和”就可以刻画得了的。不同的随机结构来自于迥异的领域,相差甚远,对其中的概率问题的研究远非传统方法能够胜任。自20世纪90年代以来,随着对复杂随机结构中随机量极限性状的研究逐步开展,涌现出许多全新的理论和方法,也深化和发展了一些原有的理论。这些理论与方法目前还散见于各种学术刊物,虽然已有不少综述性的文章介绍其中的一些理论与方法,但是仍然缺乏一本较为全面系统介绍它们的著作。本书便是产生于这样的背景之下。
本书作为国内关于随机结构极限理论方面的首本著作,将在简略介绍概率论与经典极限理论基本内容的基础上,介绍一些典型的随机结构以及概率距离理论,并逐一剖析在随机结构研究中最为广泛使用的压缩法、Polya罐方法、生成函数法、矩方法、Stein方法等,它们都是现行随机结构研究领域中最为重要的方法。作者结合近年来国内外最新的研究成果和文献,形象生动地讲述了这些方法的具体应用技巧,尽量使读者能够很快地熟悉并掌握这些方法。可以说,本书是开启随机结构研究领域大门的一把很好的钥匙。
本书包含了随机结构中的众多研究方法和实例,内容系统全面,可供有关研究人员、教师阅读,也可选作研究生有关专题课程的教材。