图书信息
图书目录

Fuzzy Computational Ontologies in Contexts (情境中的模糊计算本体, 英文版)




计算本体(computational ontology)是对概念以及概念间的各种关系的一种形式化表述,是知识表示、语义网、智能主体等人工智能主要研究领域中的重要研究对象。《情境中的模 糊计算本体(英文版)》提出了一个基于模糊集的、可表达对象对于概念的归属程度(object membership)和对象在概念中的典型程度(object typicality)的形式化计算本体模型,以具体例子论证了此形式化模型的必要性和重要性;指出了情境(context)对物体归属程度和典型程度的 影响,并对此加以形式化;最后讨论了此形式化模型在推荐系统中的应用,用实验证明利用对象典型程度,或把对象典型程度加到协同过滤法后,能进一步提高模型 的准确性。



作者:
Yi Cai, et al.

定价:
49.00元

出版时间:
2011-12-09

ISBN:
978-7-04-033889-8

物料号:
33889-00

读者对象:
学术著作

一级分类:
自然科学

二级分类:
计算机科学与工程

三级分类:
计算理论与算法

重点项目:
暂无

版面字数:
350.000千字

开本:
16开

全书页数:
202页

装帧形式:
精装
  • 前辅文
  • Chapter 1 Introduction
    • 1.1 Semantic Web and Ontologies
    • 1.2 Motivations
      • 1.2.1 Fuzziness of Concepts
      • 1.2.2 Typicality of Objects in Concepts
      • 1.2.3 Context and Its E®ect on Reasoning
    • 1.3 Our Work
      • 1.3.1 Objectives
      • 1.3.2 Contributions
    • 1.4 Structure of the Book
    • References
  • Chapter 2 Knowledge Representation on the Web
    • 2.1 Semantic Web
    • 2.2 Ontologies
    • 2.3 Description Logics
    • References
  • Chapter 3 Concepts and Categorization from a Psychological Perspective
    • 3.1 Theory of Concepts
      • 3.1.1 Classical View
      • 3.1.2 Prototype View
      • 3.1.3 Other Views
    • 3.2 Membership versus Typicality
    • 3.3 Similarity Between Concepts
    • 3.4 Context and Context E®ects
    • References
  • Chapter 4 Modeling Uncertainty in Knowledge Representation
    • 4.1 Fuzzy Set Theory
    • 4.2 Uncertainty in Ontologies and Description Logics
    • 4.3 Semantic Similarity
    • 4.4 Contextual Reasoning
    • 4.5 Summary
    • References
  • Chapter 5 Fuzzy Ontology: A First Formal Model
    • 5.1 Rationale
    • 5.2 Concepts and Properties
    • 5.3 Subsumption of Concepts
    • 5.4 Object Membership of an Individual in a Concept
    • 5.5 Prototype Vector and Typicality
    • 5.6 An Example
    • 5.7 Properties of the Proposed Model
      • 5.7.1 Object Membership
      • 5.7.2 Typicality
    • 5.8 On Object Membership and Typicality
    • 5.9 Summary
    • References
  • Chapter 6 A More General Ontology Model with Object Membership and Typicality
    • 6.1 Motivation
    • 6.2 Limitations of Previous Models
      • 6.2.1 Limitation of Previous Models in Measuring Object Membership
      • 6.2.2 Limitations of Previous Models in Measuring Object Typicality
    • 6.3 A Better Conceptual Model of Fuzzy Ontology
      • 6.3.1 A Novel Fuzzy Ontology Model
      • 6.3.2 Two Kinds of Measurements of Objects Possessing Properties
      • 6.3.3 Concepts Represented by N-Properties and L-Properties
    • 6.4 Fuzzy Membership of Objects in Concepts
      • 6.4.1 Measuring Degrees of Objects Possessing De¯ning Properties of Concepts
      • 6.4.2 Calculation of Object Fuzzy Memberships in Concepts
      • 6.4.3 Discussion
    • 6.5 Object Typicality in Concepts
      • 6.5.1 Representation of Concepts and Objects based on Prototype View
      • 6.5.2 Similarity and Dissimilarity Measurement Between Objects and Prototypes
      • 6.5.3 Modeling In°uencing Factors of Typicality
      • 6.5.4 Discussion
    • 6.6 Summary
    • References
  • Chapter 7 Context-aware Object Typicality Measurement in Fuzzy Ontology
    • 7.1 Motivation
    • 7.2 Modeling Context in Ontology
    • 7.3 Measuring Object Typicality in Context-aware Ontology
      • 7.3.1 Modeling In°uencing Factors of Typicality
      • 7.3.2 Context E®ects on In°uencing Factors of Object Typicality
      • 7.3.3 Measuring Typicality
    • 7.4 Empirical Evaluation
    • 7.5 Discussion
      • 7.5.1 Context E®ects on Measuring Object Typicality in Our Model
      • 7.5.2 Di®erences Between Various Vectors in Our Model
    • 7.6 Summary
    • References
  • Chapter 8 Object Membership with Property Importance and Property Priority
    • 8.1 Motivation
    • 8.2 A Formal Model of Fuzzy Ontology with Property Importance and Property Priority
      • 8.2.1 A Conceptual Model of Fuzzy Ontology
      • 8.2.2 Modeling Property Importance
      • 8.2.3 Modeling Property Priority
    • 8.3 Measuring Object Membership in Concepts with Property Importance and Priority
      • 8.3.1 Local Satisfaction Degrees of Objects for Properties
      • 8.3.2 Global Satisfaction Degrees of Objects for Characteristic Vectors with Weighted Properties
      • 8.3.3 Global Satisfaction Degrees of Objects for Characteristic Vectors with Prioritized Properties
      • 8.3.4 Measuring Object Membership by Aggregating Global Satisfaction Degrees
    • 8.4 Discussions
      • 8.4.1 Di®erences Between Property Importance and Property Priority
      • 8.4.2 Illustrating Examples
    • 8.5 Experiment
      • 8.5.1 Evaluation on Concepts with Property Importance
      • 8.5.2 Evaluation on Concepts with Property Priority
    • 8.6 Summary
    • References
  • Chapter 9 Applications
    • 9.1 Overview
      • 9.1.1 Motivation
      • 9.1.2 ROT
      • 9.1.3 TyCo
    • 9.2 Related Work of Recommender Systems
      • 9.2.1 Content-based Recommender Systems
      • 9.2.2 Collaborative Filtering Recommender Systems
      • 9.2.3 Characteristics of Collaborative Filtering
      • 9.2.4 Model-based and Memory-based Methods
      • 9.2.5 Hybrid Recommender Systems
    • 9.3 ROT: Typicality-based Recommendation
      • 9.3.1 A Recommendation Method based on Typicality
      • 9.3.2 Measuring Typicality Degrees of Items in Item Groups
      • 9.3.3 Measuring Typicality Degrees of Users in User Groups
      • 9.3.4 Conversion Function
    • 9.4 TyCo: Typicality-based Collaborative Filtering
      • 9.4.1 Overview of TyCo
      • 9.4.2 Mechanism of TyCo
      • 9.4.3 Neighbor Selection
      • 9.4.4 Prediction
    • 9.5 Evaluation
      • 9.5.1 Data Set Description
      • 9.5.2 Metrics
      • 9.5.3 Experiment Process
      • 9.5.4 Experiment Results
    • 9.6 Discussion
      • 9.6.1 Di®erence Between Previous Recommendation Methods and ROT
      • 9.6.2 Di®erence Between Cluster-based Collaborative Filtering Methods and TyCo
      • 9.6.3 Other In°uencing Factors
    • 9.7 Summary
    • References
  • Chapter 10 Conclusions and Future Work
    • 10.1 Conclusions
    • 10.2 Future Research Directions
    • References
  • Index