顶部
收藏

物理科学中的奇异摄动(影印版)


作者:
John C. Neu
定价:
135.00元
ISBN:
978-7-04-063249-1
版面字数:
550.00千字
开本:
特殊
全书页数:
暂无
装帧形式:
精装
重点项目:
暂无
出版时间:
2025-02-14
物料号:
63249-00
读者对象:
学术著作
一级分类:
自然科学
二级分类:
数学与统计
三级分类:
计算数学

暂无
  • 前辅文
  • Acknowledgments
  • Introduction
  • Chapter 1. What is a singular perturbation?
    • Prototypical examples
      • Singularly perturbed polynomial equations
      • Radiation reaction
        • Problem 1.1: Bad truncations
        • Problem 1.2: Harmonic oscillator with memory, and even worse truncations
      • Convection-diffusion boundary layer
        • Problem 1.3: A simple boundary layer
        • Problem 1.4: Pileup near x = 0
      • Modulated oscillations
        • Problem 1.5: Secular terms
        • Problem 1.6: Approach to limit cycle
        • Problem 1.7: Adiabatic invariant for particle in a box
    • Guide to bibliography
  • Chapter 2. Asymptotic expansions
    • Problem 2.1: Uniqueness
    • A divergent but asymptotic series
      • Problem 2.2: Divergent outer expansion
      • Problem 2.3: Another outrageous example
    • Asymptotic expansions of integrals — the usual suspects
      • Problem 2.4: Simple endpoint examples
      • Problem 2.5: Stirling approximation to n!
      • Problem 2.6: Endpoint and minimum both contribute
      • Problem 2.7: Central limit theorem
    • Steepest descent method
    • Chasing the waves with velocity v >0
    • No waves for v <0
      • Problem 2.8: Steepest descent asymptotics
    • A primer on linear waves
      • Problem 2.9: Amplitude transport
      • Problem 2.10: How far was that meteor?
      • Problem 2.11: Wave asymptotics in non-uniform medium
    • A hard logarithmic expansion
      • Problem 2.12: Logarithmic expansion
    • Guide to bibliography
  • Chapter 3. Matched asymptotic expansions
    • Problem 3.1: Physical scaling analysis of boundary layer thickness
    • Problem 3.2: Higher-order matching
    • Problem 3.3: Absorbing boundary condition
    • Matched asymptotic expansions in practice
      • Problem 3.4: Derivative layer
    • Corner layers and internal layers
      • Problem 3.5: Phase diagram
      • Problem 3.6: Internal derivative layer
      • Problem 3.7: Where does the kink go?
    • Guide to bibliography
  • Chapter 4. Matched asymptotic expansions in PDE’s
    • Moving internal layers
    • Chapman–Enskog asymptotics
      • Problem 4.1: Relaxation of kink position
      • Problem 4.2: Hamilton–Jacobi equation from front motion
      • Problem 4.3: Chapman–Enskog asymptotics
    • Projected Lagrangian
      • Problem 4.4: Circular fronts in nonlinear wave equation
      • Problem 4.5: Solitary wave dynamics in two dimensions
      • Problem 4.6: Solitary wave diffraction
    • Singularly perturbed eigenvalue problem
    • Homogenization of swiss cheese
      • Problem 4.7: Neumann boundary conditions and effective dipoles
      • Problem 4.8: Two dimensions
    • Guide to bibliography
  • Chapter 5. Prandtl boundary layer theory
    • Stream function and vorticity
    • Preliminary non-dimensionalization
    • Outer expansion and “dry water”
    • Inner expansion
      • Problem 5.1: Vector calculus of boundary layer coordinates
    • Leading order matching and a first integral
      • Problem 5.2: The body surface is a source of vorticity
      • Problem 5.3: Downstream evolution
    • Displacement thickness
    • Solutions based on scaling symmetry
    • Blasius flow over flat plate
    • Nonzero wedge angles (m≠0)
    • Precursor of boundary layer separation
      • Problem 5.4: Wedge flows with source
      • Problem 5.5: Mixing by vortex
    • Guide to bibliography
  • Chapter 6. Modulated oscillations
    • Physical flavors of modulated oscillations
      • Problem 6.1: Beats
      • Problem 6.2: The beat goes on
      • Problem 6.3: Wave packets as beats in spacetime
      • Problem 6.4: Adiabatic invariant of harmonic oscillator
      • Problem 6.5: Passage through resonance for harmonic oscillator
      • Problem 6.6: Internal resonance between waves on a ring
    • Method of two scales
      • Problem 6.7: Nonlinear parametric resonance
      • Problem 6.8: Forced van der Pol ODE
      • Problem 6.9: Inverted pendulum
    • Strongly nonlinear oscillations and action
      • Problem 6.10: Energy, action and frequency
      • Problem 6.11: Hamiltonian analysis of the adiabatic invariant
      • Problem 6.12: Poincar´e analysis of nonlinear oscillations
    • A primer on nonlinear waves
    • Modulation Lagrangian
      • Problem 6.13: Nonlinear geometric attenuation
      • Problem 6.14: Modulational instability
    • A primer on homogenization theory
      • Problem 6.15: Direct homogenization
    • Guide to bibliography
  • Chapter 7. Modulation theory by transforming variables
    • Transformations in classical mechanics
      • Problem 7.1: Geometry of action-angle variables
      • Problem 7.2: Stokes expansion for quadratically nonlinear oscillator
      • Problem 7.3: Frequency-action relation
      • Problem 7.4: Follow the bouncing ball
    • Near-identity transformations
      • Problem 7.5: van der Pol ODE by near-identity transformations
      • Problem 7.6: Subtle balance between positive and negative damping
      • Problem 7.7: Adiabatic invariants again
    • Dissipative perturbations of the Kepler problem
    • Modulation theory of damped orbits
    • Guide to bibliography
  • Chapter 8. Nonlinear resonance
    • Problem 8.1: Modulation theory of resonance
    • A prototype example
    • What resonance looks like
      • Problem 8.2: Resonance of the bouncing ball
      • Problem 8.3: Resonance by rebounds off a vibrating wall
    • Generalized resonance
    • Energy beats
    • Modulation theory of generalized resonance
      • Problem 8.4: Modulation theory for generalized resonance
    • Thickness of the resonance annulus
    • Asymptotic isolation of resonances
    • Guide to bibliography
  • Bibliography
  • Index

相关图书