顶部
收藏

Tensors and Riemannian Geometry with Applications to Differential Equations (张量与


作者:
Nail H. Ibragimov
定价:
59.00元
ISBN:
978-7-04-042385-3
版面字数:
170.000千字
开本:
16开
全书页数:
187页
装帧形式:
精装
重点项目:
暂无
出版时间:
2015-04-24
读者对象:
学术著作
一级分类:
自然科学
二级分类:
数学与统计
三级分类:
几何学

《张量与黎曼几何(微分方程应用英文版)(精)/非线性物理科学》是作者在俄罗斯、法国、 南非和瑞典多年讲授黎曼几何与张量课程讲义的基础 上整理而成。本书通俗易懂、叙述清晰。通过阅读本 书,读者将轻松掌握应用张量、黎曼几何的理论以及 几何化的方法求解偏微分方程,尤其是利用近似重整 化群理论将大大简化de Sitter 空间中广义相对论方 程的求解。

Nail H. Ibragimov教授为瑞典科学家,被公认为是在微分方程对称分析方面世界上最具权威的专家 之一。他发起并构建了现代群分析理论和应用方面很多新的发展。

  • 前辅文
  • Part I Tensors and Riemannian spaces
    • 1 Preliminaries
      • 1.1 Vectors in linear spaces
      • 1.2 Index notationSummation convention
      • Exercises
    • 2 Conservation laws
      • 2.1 Conservation laws in classical mechanics
      • 2.2 General discussion of conservation laws
      • 2.3 Conserved vectors defined by symmetries
      • Exercises
    • 3 Introduction of tensors and Riemannian spaces
      • 3.1 Tensors
      • 3.2 Riemannian spaces
      • 3.3 Application to ODEs
      • Exercises
    • 4 Motions in Riemannian spaces
      • 4.1 Introduction
      • 4.2 Isometric motions
      • 4.3 Conformal motions
      • 4.4 Generalized motions
      • Exercises
  • Part II Riemannian spaces of second-order equations
    • 5 Riemannian spaces associated with linear PDEs
      • 5.1 Covariant form of second-order equations
      • 5.2 Conformally invariant equations
      • Exercises
    • 6 Geometry of linear hyperbolic equations
      • 6.1 Generalities
      • 6.2 Spaces with nontrivial conformal group
      • 6.3 Standard form of second-order equations
      • Exercises
    • 7 Solution of the initial value problem
      • 7.1 The Cauchy problem
      • 7.2 Geodesics in spaces with nontrivial conformal group
      • 7.3 The Huygens principle
      • Exercises
  • Part III Theory of relativity
    • 8 Brief introduction to relativity
      • 8.1 Special relativity
      • 8.2 The Maxwell equations
      • 8.3 The Dirac equation
      • 8.4 General relativity
      • Exercises
    • 9 Relativity in de Sitter space
      • 9.1 The de Sitter space
      • 9.2 The de Sitter group
      • 9.3 Approximate de Sitter group.
      • 9.4 Motion of a particle in de Sitter space
      • 9.5 Curved wave operator.
      • 9.6 Neutrinos in de Sitter space
      • Exercises
  • Bibliography
  • Index

相关图书