代数儿何和算:术代数几何是现代数学的重要分支,与数学的许多分支有着广泛的联系,如数论、解析儿何、微分几何、交换代数、代数群、拓扑学等。代数几何是任何一个希望在数学学科有所作为的学生和研究人员需要了解的一门学科,而模空间足代数几何最重要的一类对象。
《模手册(卷1)(英文版)》是由50多位活跃在代数几何领域的世界知名专家撰写的综述性文章组成。每一篇文章针对一个专题,作者力求将第一手、最新鲜 的材料呈现给读者,通过介绍该专题中基础知识、例子和结论、带领读者快速进入该领域,并了解领域内重要问题;同时介绍最新的进展,使得读者能够很快捕捉剑 该领域最主要的文献 。
- Front Matter
- Logarithmic geometry and moduli Dan Abramovich, Qile Chen, Danny Gillam, Yuhao Huang, Martin Olsson,Matthew Satriano and Shenghao Sun
- Invariant Hilbert schemes Michel Brion
- Algebraic and tropical curves: comparing their moduli spaces Lucia Caporaso
- A superficial working guide to deformations and moduli FCatanese
- Moduli spaces of hyperbolic surfaces and their Weil–Petersson volumes Norman Do
- Equivariant geometry and the cohomology of the moduli space of curves Dan Edidin
- Tautological and non-tautological cohomology of the moduli space of curves CFaber and RPandharipande
- Alternate compactifications of moduli spaces of curves Maksym Fedorchuk and David Ishii Smyth
- The cohomology of the moduli space of Abelian varieties Gerard van der Geer
- Moduli of K3 surfaces and irreducible symplectic manifolds VGritsenko, KHulek and GKSankaran
- Normal functions and the geometry of moduli spaces of curves Richard Hain
- 版权