顶部
收藏

软物质力学进展(英文版)


作者:
E
定价:
89.00元
ISBN:
978-7-04-031729-9
版面字数:
410.000千字
开本:
16开
全书页数:
276页
装帧形式:
精装
重点项目:
暂无
出版时间:
2011-10-17
读者对象:
学术著作
一级分类:
自然科学
二级分类:
力学
三级分类:
应用力学

《软物质力学进展(英文版)》作为软物质物理学的一个重要分支,近年来软物质力学的研究取得了重大的发展。《软物质力学进展(英文版)》即是从力学的角度 系统总结了软物质物理学的最新进展,深入介绍了软物质力学研究的新方法,包括多尺度胶体计算力学、熵弹性理论、无网格模拟液晶聚合物、DNA模拟计算等, 并从跨学科的角度出发,介绍了当前软物质力学研究领域的一些前沿课题。

《软物质力学进展(英文版)》的主编是美国加州大学伯克利分校的李少凡教授和南非科学院院士、开普半岛科技大学的孙博华教授。

  • 前辅文
  • Chapter 1 Atomistic to Continuum Modeling of DNA Molecules
    • 1.1 Introduction
    • 1.2 Statistical models for DNAs|polymer elasticity
      • 1.2.1 The freely jointed chain (FJC) model
      • 1.2.2 The worm-like chain (WLC) model
      • 1.2.3 Beyond the entropic regime
      • 1.2.4 Long-range electrostatic e®ects
    • 1.3 Atomistic modeling of DNA molecules
      • 1.3.1 MD basic theory
      • 1.3.2 Force ¯elds for nucleic acids
      • 1.3.3 Limitations and challenges
      • 1.3.4 MD simulation of DNA stretching
    • 1.4 Continuum DNA models
      • 1.4.1 Kirchho®'s elastic Rod model for DNAs
      • 1.4.2 Finite element (FE) analysis of DNAs
      • 1.4.3 Director ¯eld method for modeling of DNA viral packaging
    • 1.5 Multiscale homogenization for simulation of DNA molecules
      • 1.5.1 Basics of multiscale wavelet projection method
      • 1.5.2 First-level homogenization|wavelet-based coarse-grained DNA model
      • 1.5.3 Second-level homogenization|hyperelastic beam formulation for DNA
      • 1.5.4 Applications
    • 1.6 Conclusion
    • Appendix: Wavelet and decomposition coe±cients for linear spline function
    • References
  • Chapter 2 Computational Contact Formulations for Soft Body Adhesion
    • 2.1 Introduction
    • 2.2 Continuum contact formulation
    • 2.3 Finite element formulations
    • 2.4 Adhesion examples
    • 2.5 Peeling contact
    • 2.6 Rough surface contact
    • 2.7 Conclusion
    • References
  • Chapter 3 Soft Matter Modeling of Biological Cells
    • 3.1 Introduction
    • 3.2 Soft matter modeling of cells
      • 3.2.1 The future is soft
      • 3.2.2 The reasons to use liquid crystal elastomers to model cell and focal adhesion
      • 3.2.3 Elasticity of soft contact/cell adhesion and surface material property sensing
      • 3.2.4 Cell and ECM modeling
    • 3.3 A nanoscale adhesive contact model
    • 3.4 Meshfree Galerkin formulation and the computational algorithm
    • 3.5 Numerical simulations
      • 3.5.1 Validation of the material models
      • 3.5.2 Endothelial cell simulations
      • 3.5.3 Stem cell simulations
    • 3.6 Discussion and conclusions
    • References
  • Chapter 4 Modeling the Mechanics of Semi°exible Biopoly-mer Networks: Non-a±ne Deformation and Presence of Long-range Correlations
    • 4.1 Introduction
    • 4.2 Network representation and generation
    • 4.3 A±ne vs. non-a±ne deformation
    • 4.4 Network microstructure: scaling properties of the ¯berdensity function
    • 4.5 Network elasticity: the equivalent continuum and its elastic moduli
    • 4.6 Boundary value problems on dense ¯ber network domains
      • 4.6.1 Background: a±ne and non-a±ne theories
      • 4.6.2 Karhunen { Loeve decomposition
      • 4.6.3 Stochastic ¯nite element formulation of 2D problems
    • 4.7 Solution of boundary value problems on dense ¯bernetwork domains
    • References
  • Chapter 5 Atomic Scale Monte-Carlo Studies of Entropic Elasticity Properties of Polymer Chain Molecules
    • 5.1 Introduction
    • 5.2 Entropic elasticity of linear polymer molecules
      • 5.2.1 Continuum limit
      • 5.2.2 Monte { Carlo sampling
    • 5.3 Summary
    • References
  • Chapter 6 Continuum Models of Stimuli-responsive Gels
    • 6.1 Introduction
    • 6.2 Nonequilibrium thermodynamics of neutral gels
    • 6.3 A simple material model for neutral gels
    • 6.4 Swelling of a spherical gel
    • 6.5 Thermodynamics of polyelectrolyte gels
    • 6.6 A material model for polyelectrolyte gels
    • 6.7 Chemical reactions and pH-sensitive gels
    • 6.8 Equilibrium models of polymeric gels
    • 6.9 Summary
    • References
  • Chapter 7 Micromechanics of 3D Crystallized Protein Structures
    • 7.1 Introduction
    • 7.2 3D crystallized protein structures
    • 7.3 Thermomechanical properties of protein crystals
    • 7.4 A micromechanical model for protein crystals
    • 7.5 Application to tetragonal lysozyme as a protein crystal model
      • 7.5.1 Elastic deformation in lysozyme crystals
      • 7.5.2 Plastic deformation in lysozyme crystals
      • 7.5.3 Anisotropic plastic yielding of lysozyme crystals
      • 7.5.4 Orientation e®ect on mechanical behavior of lysozyme crystals
    • References
  • Chapter 8 Micromechanical Modeling of Three-dimensional Open-cell Foams
    • 8.1 Introduction
      • 8.1.1 Unit cell models
      • 8.1.2 Random cell models
    • 8.2 Micromechanics model using a tetrakaidecahedral unit cell
      • 8.2.1 Formulation
      • 8.2.2 Numerical results
      • 8.2.3 Summary
    • 8.3 Random cell model incorporating cell shape and strut cross-sectional area irregularities
      • 8.3.1 Analysis
      • 8.3.2 Results and discussion
      • 8.3.3 Summary
    • References
  • Chapter 9 Capillary Adhesion of Micro-beams and Plates:A Review
    • 9.1 Introduction
    • 9.2 Capillary adhesion of micro-beams of in¯nitesimal deformation
    • 9.3 Capillary adhesion of micro-beams of ¯nite deformation
    • 9.4 Hierarchical structure of micro-beams induced by capillary force
    • 9.5 Capillary adhesion of a plate
    • 9.6 Conclusions
    • References
  • Color Plots

相关图书