顶部
收藏

Electromagnetism(影印版)电磁学


作者:
Gerald L Pollack
定价:
66.30元
ISBN:
978-7-04-016576-0
版面字数:
600.000千字
开本:
16开
全书页数:
624页
装帧形式:
平装
重点项目:
暂无
出版时间:
2005-05-20
读者对象:
高等教育
一级分类:
物理学与天文学类
二级分类:
物理学/应用物理学/天文学专业课程
三级分类:
电磁学

《海外优秀理科类系列教材:电磁学(影印版)》是在美国大学使用比较广泛的一本为本科生编写的电磁学教材。虽然在总体上,该教材仍然是一本比较传统的教材,但作者仍然在如何能帮助学生更好的学习电磁学课程做了不少努力。例如,提供不少和实际联系比较紧密的例子,讲解详细的例题以及提供了不少使用计算机解 决问题的算例。这些内容对于学生理解电磁学内容,应用所学知识都有很好的帮助。另外,该教材的习题难度适中,并有不少提示,对于巩固学习内容也有很好的帮助。

《海外优秀理科类系列教材:电磁学(影印版)》的难度和国内教学要求比较接近,可作为物理类专业电磁学课程的教材,尤其适合开展双语教学的学校,对于有志出国深造的人员也是一本必不可少的参考书。

  • 1 History and Perspective
    • 1.1 Brief History of the Science of Electromagnetism
    • 1.2 Electromagnetism in the Standard Model
  • 2 Vector Calculus
    • 2.1 Vector Algebra
      • 2.1.1 Definitions
      • 2.1.2 Addition and Multiplication of Vectors
      • 2.1.3 Vector Product Identities
      • 2.1.4 Geometric Meanings
    • 2.2 Vector Differential Operators
      • 2.2.1 Gradient of a Scalar Function
      • 2.2.2 Divergence of a Vector Function
      • 2.2.3 Curl of a Vector Function
      • 2.2.4 DelIdentities
    • 2.3 Integral Theorems
      • 2.3.1 Gauss's Theorem
      • 2.3.2 Stokes's Theorem
      • 2.3.3 Vector Calculus in Fluid Mechanics
    • 2.4 Curvilinear Coordinates
      • 2.4.1 General Derivations
      • 2.4.2 Cartesian, Cylindrical, and Spherical Coordinates
    • 2.5 The Helmholtz Theorem
  • 3 Basic Principles of Electrostatics
    • 3.1 Coulomb's Law
      • 3.1.1 The Superposition Principle
    • 3.2 The Electric Field
      • 3.2.1 Definition
      • 3.2.2 Charge as the Source of E
      • 3.2.3 Field of a Charge Continuum
    • 3.3 Curl and Divergence of E
      • 3.3.1 Field Theory Versus Action at a llistance
      • 3.3.2 Boundary Conditions of the Electrostatic rreia
    • 3.4 The Integral Form of Gauss's Law
    • 3.4.1Flux and Charge
      • 3.4.2 Proof of Gauss's Law
      • 3.4.3 Calculations Based on Gauss's Law
    • 3.5 Green's Function and the Dirac delta Function
      • 3.5.1 The Dirac delta Function
      • 3.5.2 Another Proof of Gauss's Law
    • 3.6 The Electric Potential
      • 3.6.1 Definition and Construction
      • 3.6.2 Poisson's Equation
      • 3.6.3 Example Calculations of V (x)
    • 3.7 Energy of the Electric Field
    • 3.8 The Multipole Expansion
      • 3.8.1 Two Charges
      • 3.8.2 The Electric Dipole
      • 3.8.3 Moments of a General Charge Distribution
      • 3.8.4 Equipotentials and Field Lines
      • 3.8.5 Torque and Potential Energy for a Dipole in an Electric Field
    • 3.9 Applications
    • 3.10 Chapter Summary
  • 4 Electrostatics and Conductors
    • 4.1 Electrostatic properties of conductors
    • 4.2 Electrostatic Problems with Rectangular Symmetry
      • 4.2.1 Charged Plates
      • 4.2.2 Problems with Rectangular Symmetry and External Point Charges. The Method of Images
    • 4.3 Problems with Spherical Symmetry
      • 4.3.1 Charged Spheres
      • 4.3.2 Problems with Spherical Symmetry and External Charges
    • 4.4 Problems with Cylindrical Symmetry
      • 4.4.1 Charged Lines and Cylinders
      • 4.4.2 Problems with Cylindrical Symmetry and an External Line Charge
  • 5 General Methods for Laplace's Equation
    • 5.1 Separation of Variables for Cartesian Coordinates
      • 5.1.1 Separable Solutions for Cartesian Coordinates j.r.t nxamptes
    • 5.2 Separation of Variables for Spherical Polar Coordinates
      • 5.2.1 Separable Solutions for Spherical Coordinates
      • 5.2.2 Legendre Polynomials
      • 5.2.3 Examples with Spherical Boundaries
    • 5.3 Separation of Variables for Cylindrical Coordinates
    • 5.3.1 Separable Solutions for Cylindrical Coordinates
    • 5.4 Conjugate Functions in 2 Dimensions
    • 5.5 Iterative Relaxation: A Numerical Method
  • 6 Electrostatics and Dielectrics
    • 6.1 The Atom as an Electric Dipole
      • 6.1.1 Induced Dipoles
      • 6.1.2 Polar Molecules
    • 6.2 Polarization and Bound Charge
    • 6.3 The Displacement Field
      • 6.3.1 Linear Dielectrics
      • 6.3.2 The Clausius-Mossotti Formula
      • 6.3.3 Poisson's Equation in a Uniform Linear Dielectric
    • 6.4 Dielectric Material in a Capacitor
      • 6.4.1 Design of Capacitors
      • 6.4.2 Microscopic Theory
      • 6.4.3 Energy in a Capacitor
      • 6.4.4 A Concrete Model of a Dielectric
    • 6.5 Boundary Value Problems with Dielectrics
      • 6.5.1 The Boundary Conditions
      • 6.5.2 A Dielectric Sphere in an Applied Field
      • 6.5.3 A Point Charge above a Dielectric with a Planar Bound-ary Surface
      • 6.5.4 A Capacitor Partially Filled with Dielectric
  • 7 Electric Currents
    • 7.1 Electric Current in a Wire
    • 7.2 Current Density and the Continuity Equation
      • 7.2.1 Local Conservation of Charge
      • 7.2.2 Boundary Condition on J(x, r)
    • 7.3 Current and Resistance
      • 7.3.1 Ohm's Law
      • 7.3.2 Fabrication of Resistors
      • 7.3.3 The Surface Charge en a Current Carrying Wire
    • 7.4 A Classical Model of Conductivity
    • 7.5 Joule's Law
    • 7.6 Decay of a Charge Density Fluctuation
    • 7.7 1-V Characteristic of a Vacuum-Tube Diode
    • 7.8 Chapter Summary
  • 8 Magnetostatics
    • 8.1 The Magnetic Force and the Magnetic Field
      • 8.1.1 Force on a Moving Charge
      • 8.1.2 Force on a Current-Carrying Wire
    • 8.2 Applications of the Magnetic Force
      • 8.2.1 Helical or Circular Motion of q in Uniform B
      • 8.2.2 Cycloidal Motion of q in Crossed E and B
      • 8.2.3 Electric Motors
    • 8.3 Electric Current as a Source of Magnetic Field
      • 8.3.1 The Biot-Savart Law
      • 8.3.2 Forces on Parallel Wires
      • 8.3.3 General Field Equations for B(x)
    • 8.4 Ampere's Law
      • 8.4.1 Ampere Law Calculations
      • 8.4.2 Formal Proof of Ampere's Law
    • 8.5 The Vector Potential 280
      • 8.5.1 General Solution for A(x)
    • 8.6 The Magnetic Dipole
      • 8.6.1 Asymptotic Analysis
      • 8.6.2 Dipole Moment of a Planar Loop
      • 8.6.3 Torque and Potential Energy of a Magnetic Dipole
      • 8.6.4 The Magnetic Field of the Earth
    • 8.7 The Full Field of a Current Loop
  • 9 Magnetic Fields and Matter
    • 9.1 The Atom as a Magnetic Dipole
      • 9.1.1 Diamagnetism
      • 9.1.2 Paramagnetism
    • 9.2 Magnetization and Bound Currents
      • 9.2.1 Examples
      • 9.2.2 A Geometric Derivation of the Bound Currents
    • 9.3 Am砂re's Law for Free Currents. and H
      • 9.3.1 The Integral Form of Ampere's Law
      • 9.3.2 The Constitutive Equation
      • 9.3.3 Magnetic Susceptibilities
      • 9.3.4 Boundary Conditions for Magnetic Fields
    • 9.4 Problems Involving Free Currents and Magnetic Materials
    • 9.5 A Magnetic Body in an External Field: The Magnetic Scalar Potential Φm(x)
    • 9.6 Ferromagnetism
      • 9.6.1 Measuring Magnetization Curves: The Rowland Ring
      • 9.6.2 Magnetization Curves of Ferromagnetic Materials
      • 9.6.3 The Permeability of a Ferromagnetic Material
  • 10 Electromagnetic Induction
    • 10.1 Motional EMF
      • 10.1.1 Electromotive Force
      • 10.1.2 EMF from Motion in B
      • 10.1.3 The Faraday Disk Generator
    • 10.2 Faraday's Law of Electromagnetic Induction
      • 10.2.1 Mathematical Statement
      • 10.2.2 Lenz's Law
      • 10.2.3 Eddy Currents
    • 10.3 Applications of Faraday's Law
      • 10.3.1 The Electric Generator and Induction Motor
      • 10.3.2 The Betatron
      • 10.3.3 Self-Inductance
      • 10.3.4 Classical Model of Diamagnetism
    • 10.4 Mutual Inductance
    • 10.5 Magnetic Field Energy
      • 10.5.1 Energy in a Ferromagnet
  • 11 The Maxwell Equations
    • 11.1 The Maxwell Equations in Vacuum and the Displacement Current
      • 11.1.1 The Displacement Current
    • 11.2 Scalar and Vector Potentials
      • 11.2.1 Gauge Transformations and Gauge Invariance
      • 11.2.2 Gauge Choices and Equations for A(x,t) and V(x,t)
    • 11.3 The Maxwell Equations in Matter
      • 11.3.1 Free and Bound Charge and Current
      • 11.3.2 Boundary Conditions of Fields
    • 11.4 Energy and Momentum of Electromagnetic Fields
      • 11.4.1 Poynting's Theorem
      • 11.4.2 Field Momentum
    • 11.5 Electromagnetic Waves in Vacuum
      • 11.5.1 Derivation of the Wave Equation
      • 11.5.2 An Example of a Plane Wave Solution
      • 11.5.3 Derivation of the General Plane Wave Solution
      • 11.5.4 A Spherical Harmonic Wave
      • 11.5.5 The Theory of Light
  • 12 Electromagnetism and Relativity
    • 12.1 Coordinate Transformations
      • 12.1.1 The Galilean Transformation
      • 12.1.2 The Lorentz Transformation
      • 12.1.3 Examples Involving the Lorentz Transformation
    • 12.2 Minkowski Space
      • 12.2.1 4-vectors, Scalars, and Tensors
      • 12.2.2 Kinematics of a Point Particle
      • 12.2.3 Relativistic Dynamics
    • 12.3 Electromagnetism in Covariant Form
      • 12.3.1 The Lorentz Force and the Field Tensor
      • 12.3.2 Maxwell's Equations in Covariant Form
      • 12.3.3 The 4-vector Potential
    • 12.4 Field Transformations
    • 12.5 Fields Due to a Point Charge in Uniform Motion
    • 12.6 Magnetism from Relativity
    • 12.7 The Energy-Momentum Flux Tensor
  • 13 Electromagnetism and Optics
    • 13.1 Electromagnetic Waves in a Dielectric
    • 13.2 Reflection and Refraction at a Dielectnc Interface
      • 13.2.1 Wave Vectors
      • 13.2.2 Reflectivity for Normal Incidence
      • 13.2.3 Reflection for Incidence at Arbitrary Angles: Fresnel's Equations
    • 13.3 Electromagnetic Waves in a Conductor
      • 13.3.1 Reflectivity of a Good Conductor
    • 13.4 A Classical Model of Dispersion: The Frequency Dependence of Material Properties
      • 13.4.1 Dispersion in a Dielectric
      • 13.4.2 Dispersion in a Plasma
  • 14 Wave Guides and Transmission Lines
    • 14.1 Electromagnetic Waves Between Parallel Conducting Planes
      • 14.1.1 The TEM Solution
      • 14.1.2 TE Waves
      • 14.1.3 TM Waves
      • 14.1.4 Summary
    • 14.2 The Rectangular Wave Guide 540
      • 14.2.1 Transverse Electric Modes TE(m, n)
      • 14.2.2 Transverse Magnetic Modes TM(m, n)
    • 14.3 Wave Guide of Arbitrary Shape 549
    • 14.4 The TEM Mode of a Coaxial Cable
    • 14.5 Cavity Resonance
  • 15 Radiation of Electromagnetic Waves
    • 15.1 The Retarded Potentials 561
      • 15.1.1 Green's Functions
    • 15.2 Radiation from an Electric Dipole
      • 15.2.1 The Hertzian Dipole
      • 15.2.2 Atomic Transitions
      • 15.2.3 Magnetic Dipole Radiation
      • 15.2.4 Complete Fields of a Hertzian Dipole
    • 15.3 The Half-Wave Linear Antenna
    • 15.4 The Larmor Formula: Radiation from a Point Charge
    • 15.5 Classical Electron Theory of Light Scattering
    • 15.6 Complete Fields of a Point Charge: The Li6nard-Wiechert Potentials
      • 15.6.1 A Charge with Constant Velocity
      • 15.6.2 The Complete Fields
      • 15.6.3 Generalization of the Larmor Formula
  • A Electric and Magnetic Units
  • B The Helmholtz Theorem
  • Index

相关图书


相关数字化产品