顶部
收藏

Physics for Scientists and Engineers with Modern Physics(third Edition)大学物理学(第3版


作者:
滕小瑛
定价:
97.00元
ISBN:
978-7-04-016563-0
版面字数:
1800.000千字
开本:
16开
全书页数:
994页
装帧形式:
平装
重点项目:
暂无
出版时间:
2005-07-20
读者对象:
高等教育
一级分类:
物理学与天文学类
二级分类:
理工类专业物理学基础课程
三级分类:
大学物理学

本书根据D.C. Giancoli编著的Physics for Scientists and Engineers with Modern Physics (Third Edition)改编。

本书的原版书图片精美,素材实例丰富,语言平实流畅,注重物理理论与现实生活的结合及物理在工程技术中的应用,特别是书中向读者展示物理世界的方法非常值得称道,注重启发学生思考,激发学生自主学习的热情。可以说,这是一本非常优秀的国外大学物理教材。对原版书的改编,力求保持原作的风格和体系,参照教育部非物理类专业物理基础课程教学指导分委员会2004年制订的《大学物理课程教学基本要求(讨论稿)》,删掉部分与中学物理重复的内容。对于原版书中一些不属于国内课堂讲授的内容,作为拓展阅读资料保留。

本书可作为高等院校理工科非物理专业大学物理课程的双语教材,也可供社会读者阅读参考。

  • 前辅文
  • 1 INTRODUCTION, MEASUREMENT, ESTIMATING
    • 1-1 The Nature of Science
    • 1-2 Models, Theories, and Laws
    • 1-3 Measurement and Uncertainty
    • 1-4 Units, Standards, and the SI System
    • 1-5 Converting Units
    • 1-6 Order of Magnitude: Rapid Estimating
    • 1-7 Dimensions and Dimensional Analysis
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION
    • 2-1 Reference Frames and Displacement
    • 2-2 Average Velocity
    • 2-3 Instantaneous Velocity
    • 2-4 Acceleration
    • 2-5 Motion at Constant Acceleration
    • 2-6 Solving Problems
    • 2-7 Falling Objects
    • 2-8 Use of Calculus
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 3 KINEMATICS IN TWO DIMENSIONS
    • 3-1 Vectors and Scalars
    • 3-2 Addition of Vectors—Graphical Methods
    • 3-3 Subtraction of Vectors, and Multiplication of a Vector by a Scalar
    • 3-4 Adding Vectors by Components
    • 3-5 Unit Vectors
    • 3-6 Vector Kinematics
    • 3-7 Projectile Motion
    • 3-8 Solving Problems involving Projectile Motion
    • 3-9 Uniform Circular Motion
    • 3-10 Relative Velocity
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 4 DYNAMICS: NEWTON'S LAWS OF MOTION
    • 4-1 Force
    • 4-2 Newton's First Law of Motion
    • 4-3 Mass
    • 4-4 Newton's Second Law of Motion
    • 4-5 Newton's Third Law of Motion
    • 4-6 Weight——the Force of Gravity
    • 4-7 Solving Problems with Newton's Laws: Free-Body Diagrams
    • 4-8 Problem Solving——A General Appranch
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 5 FURTHER APPLICATIONS OF NEWTON's LAWS
    • 5-1 Applications of Newton's Laws Involving Friction
    • 5-2 Dynamics of Uniform Circular Motion
    • 5-3 Highway Curves, Banked and Unbanked
    • 5-4 Nonuniform Circular Motion
    • 5-5 Velocity-Dependent Forces
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • *6 GRAVITATION AND NEWTON'S SYNTHESIS
    • 6-1 Newton's Law of Universal Gravitation
    • 6-2 Satellites and "Weightlessness”
    • 6-3 Kepler's Laws and Newton's Synthesis
    • 6-4 Gravitational Field
    • 6-5 Types of Forces in Nature
    • 6-6 Gravitational Versus Inertial Mass
    • 6-7 Gravitation as Curvature of Space
    • QUESTIONS
  • 7 WORK AND ENERGY
    • 7-1 Work Done by a Constant Force
    • 7-2 Scalar Product of Two Vectors
    • 7-3 Work Done by a Varying Force
    • 7-4 Kinetic Energy and the Work-Energy Principle
    • *7-5 Kinetic Energy at Very High Speed
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 8 CONSERVATION OF ENERGY
    • 8-1 Conservative and Nonconservative Forces
    • 8-2 Potential Energy
    • 8-3 Mechanical Energy and Its Conservation
    • 8-4 Problem Solving Using Conservation of Mechanical Energy
    • 8-5 The Law of Conservation of Energy
    • 8-6 Energy Conservation with Dissipative Forces: Solving Problems
    • 8-7 Gravitational Potential Energy and Escape Velocity
    • 8-8 Power
    • 8-9 Potengyl Energy Diagrams
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 9 LINEAR MOMENTUM AND COLLISIONS
    • 9-1 Momentum and Its Relation to Force
    • 9-2 Conservation of Momentum
    • 9-3 Collisions and Impulse
    • 9-4 Conservation of Energy and Momentum in Collisions
    • 9-5 Elastic Collisions in One Dimension
    • 9-6 Inelastic Collisions
    • 9-7 Collisions in Two or Three Dimensions
    • 9-8 Center of Mass (CM)
    • 9-9 Center of Mass and Translational Motion
    • *9-10 Systems of Variable Mass
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 10 ROTATIONAL MOTION ABOUT A FIXED AXIS
    • 10-1 Angular Quantities
    • 10-2 Kinematic Equations for Uniformly Accelerated Rotational Motion
    • 10-3 Rolling Motion (without slipping)
    • 10-4 Vector Nature of Angular Quantities
    • 10-5 Torque
    • 10-6 Rotational Dynamics
    • 10-7 Solving Problems in Rotational Dynamics
    • 10-8 Determining Moments of Inertia
    • 10-9 Angular Momentum and Its Conservation
    • 10-10 Rotational Kinetic Energy
    • 10-11 Rotational Plus Translational Motion
    • *10-12 Why Does a Rolling Sphere Slow Down?
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 11 GENERAL ROTATION
    • 11-1 Vector Cross Product
    • 11-2 The Torque Vector
    • 11-3 Angular Momentum of a Particle
    • 11-4 Angular Momentum and Torque for a System of Particles
    • 11-5 Angular Momentum and Torque
    • *11-6 Rotational Imbalance for a Rigid Body
    • 11-7 Conservation of Angular Momentun
    • *11-8 The Spinning Top
    • 11-9 Rotating Frames of Reference
    • *11-10 The Coriolis Effect
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 12 OSCILLATIONS
    • 12-1 Oscillations of a Spring
    • 12-2 Simple Harmonic Motion
    • 12-3 Energy in the Simple Harmonic Oscillator
    • 12-4 Simple Harmonic Motion Related to Uniform Circular Motion
    • 12-5 The Simple Pendulum
    • 12-6 The Physical Pendulum and the Torsion Pendulum
    • 12-7 Damped Harmonic Motion
    • 12-8 Forced Vibrations
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 13 WAVE MOTION
    • 13-1 Characteristics of Wave Motion
    • 13-2 Wave Types
    • 13-3 Energy Transported by Waves
    • 13-4 Mathematical Representation of a Traveling Wave
    • *13-5 The Wave Equation
    • 13-6 The Principle of Superposition
    • 13-7 Reflection and Transmission
    • 13-8 Interference
    • 13-9 Standig, Waves
    • *13-10 Refraction
    • 13-11 Diffraction
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 14 SOUND
    • 14-1 Characteristics of Sound
    • *14-2 Intensity of Sound
    • 14-3 Interference of Sound Waves
    • 14-4 DoppleiEffect
    • *14-5 Shock Waves and the Sonic Boom
    • *14-6 Applications
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 15 TEMPERATURE AND THE IDEAL GAS LAW
    • 15-1 Atomic Theory of Matter
    • 15-2 Thermal Equilibrium and the Zeroth Law of Thermodynamics
    • 15-3 The Gas Laws and Absolute Temperature
    • 15-4 The Ideal Gas Law
    • 15-5 Problem Solving with the Ideal Gas Law
    • 15-6 Ideal Gas Law in Terms of Molecules: Avogadro's Number
    • *15-7 Ideal Gas Temperature Scale—a Standard
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 16 KINETC THEORY OF GASES
    • 16-1 The Ideal Gas Law and the Molecular Interpretation of Temperature
    • 16-2 Distribution of Molecular Speeds
    • 16-3 Real Gases and Changes of Phase
    • *16-4 Vapor Pressure and Humidity
    • *16-5 Van der Waals Equation of State
    • 16-6 Mean Free Path
    • *16-7 Diffusion
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 17 HEAT AND THE FIRST LAW OF THERMODYNAMICS
    • 17-1 Heat as Energy Transfer
    • 17-2 Internal Energy
    • 17-3 Specific Heat
    • 17-4 The First Law of Thermodynamics
    • 17-5 Applying the First Law of Thermodynamics
    • 17-6 Molar Specific Heats for Gases, and the Equipartition of Energy
    • 17-7 Adiabatic Expansion of a Gas
    • *17-8 Heat Transfer: Conduction, Convection, Radiation
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 18 SECOND LAW OF THERMOD-YNAMICS
    • 18-1 The Second Law of Thermodynamics-Introduction
    • 18-2 Heat Engines
    • 18-3 Reversible and Irreversible Processes
    • 18-4 Refrigerators, Air Conditioners, and Heat Pumps
    • 18-5 Entropy
    • 18-6 Entropy and the Second Law of Thermodynamics
    • 18-7 Order to Disorder
    • 18-8 Energy Availability
    • *18-9 Statistical Interpretation of Entropy and the Second Law
    • *18-10 Thermodynamic Temperature Scale
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 19 ELECTRIC CHARGE AND ELECTRIC FIELD
    • 19-1 Static Electricity
    • 19-2 Electric Charge in the Atom
    • 19-3 Insulators and Conductors
    • 19-4 Induced Charge
    • 19-5 Coulomb's Law
    • 19-6 The Electric Field
    • 19-7 Electric Field Calculations for Continuous Charge Distributions
    • 19-8 Field Ismes
    • 19-9 Electric Fields and Conductors
    • 19-10 Motion of a Charged Particle in an Electric Field
    • 19-11 Electric Dipoles
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 20 GAUSS'S LAW
    • 20-1 Electric Flux
    • 20-2 Gauss's Law
    • 20-3 Applications of Gauss's Law
    • *20-4 Experimental Basis of Gauss's and Coulomb's Law
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 21 ELECTRIC POTENTIAL
    • 21-1 Electric Potential and Potential Difference
    • 21-2 Relation Between Electric Potential and Electric Field
    • 21-3 Electric Potential Due to Point Charges
    • 21-4 Potential Due to Any Charge Distribution
    • 21-5 Equipotential Surfaces
    • 21-6 Electricipoles
    • 21-7 E Determined from V
    • 21-8 Electrostatic Potential Energy
    • *21-9 Cathode Ray Tube: TV and Computer Monitors, Oscilloscope
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 22 CAPACITANCE, DIELECTRICS, ELECTRIC ENERGY STORAGE
    • 22-1 Capacitors
    • 22-2 Determination of Capacitance
    • 22-3 Capacitors in Series and Parallel
    • 22-4 ElectricEnergy Storage
    • 22-5 Dielectrics
    • 22-6 Molecular Description of Dielectrics
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 23 ELECTRIC CURRENTS AND RESISTANCE
    • 23-1 The Electric Battery
    • 23-2 Electric Current
    • 23-3 Ohm's Law: Resistance and Resistors
    • 23-4 Resistivity
    • 23-5 Electric Power
    • 23-6 Alternating Current
    • 23-7 Aliternscople Vjew of Electrie Curtrente Current Density and Drift Velocity
    • *23-8 Superconductivity
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 24 DC CIRCUITS
    • 24-1 EMF and Terminal Voltage
    • 24-2 Resistors in Series and in Parallel
    • *24-3 Kirchhoff's Rules
    • *24-4 Circuits Containing Resistor and Capacitor (RC Circuits)
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 25 MAGNETISM
    • 25-1 Magnets and Magnetic Fields
    • 25-2 Electric Currents Produce Magnetism
    • 25-3 Force on an Electric Current in a Magnetic Field
    • 25-4 Force on an Electric Charge Moving in a Magnetic Field
    • 25-5 Torque on a Current Loop: Magnetic Dipole Moment
    • *25-6 Applications: Galvanometers, Motors, Loudspeakers
    • *25-7 Dicovery and Properties of the Electron
    • 25-8 The Hall Effect
    • *25-9 Mass Spectrometer
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 26 SOURCES OF MAGNETC FELD
    • 26-1 Magnetic Field Due to a Straight Wire
    • 26-2 Force between Two Parallel Wires
    • 26-3 Operational Definitions of the Ampere and the Coulomb
    • 26-4 Ampère's Law
    • 26-5 Magnetic Field of a Solenoid and a Toroid
    • 26-6 Biot-Savart Law
    • *26-7 Magnetic Materials——Ferromagnetism
    • 26-8 Electromagnets and Solenoids
    • 26-9 Magnetic Fields in Magnetic Materials
    • *26-10 Paramagnetism and Diamagnetism
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 27 ELECTROMAGNETIC INDUCTION AND FARADAY'S LAW
    • 27-1 Induced EMF
    • 27-2 Faraday's Law of Induction
    • 27-3 EMF Induced in a Moving Conductor
    • 27-4 A Changing Magnetic Flux Produces an Electric Field
    • *27-5 Applications of Induction: Sound Systems, Computer Memory, the Seismograph
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 28 INDUCTANCE
    • 28-1 Mutual Inductance
    • 28-2 Self-Inductance
    • 28-3 Energy Stored in a Magnetic Field
    • *28-4 LR Circuits
    • *28-5 LC Circuits and Electromagnetic Oscillations
    • *28-6 LC Oscillations with Resistance (LRC Circuit)
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 29 MAXWELL'S EQUATIONS AND ELECTROMAGNETIC WAVES
    • 29-1 Changing Electric Fields Produce Magnetic Fields
    • 29-2 Gauss's Law for Magnetism
    • 29-3 Maxwell's Equations
    • 29-4 Production of Electromagnetic Waves
    • 29-5 Electromagnetic Waves, and Their Speed, from Maxwell's Equations
    • 29-6 Light as an Electromagnetic Wave a the Electromagnetic Spectrum
    • *29-7 Energy in EM Waves
    • *29-8 Radiation Pressure
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 30 THE WAVE NATURE OF LIGHT
    • 30-1 Huygens' Principle and Diffraction
    • 30-2 Huygens' Principle and the Law of Refraction
    • 30-3 Interfmrence—Young's Double-Slit Experiment
    • 30-4 Coherence
    • 30-5 Intensity in the Double-Slit Interference Pattern
    • 30-6 Interference in Thin Films
    • 30-7 Michelson Interferometer
    • *30-8 Luminous Intensity
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 31 DIFFRACTION AND POLARIZATION
    • 31-1 Diffraction by a Single Slit
    • 31-2 Intensity in Single-Slit Diffraction Pattern
    • 31-3 Diffraction in the Double-Slit Experiment
    • 31-4 Limits of Resolution
    • 31-5 Resolution of Telescopes and Microscopes
    • *31-6 Ronplution of the Human Eye anà'Useful Magnification
    • 31-7 Diffraction Grating
    • *31-8 The Spectrometer and Spectroscopy
    • 31-9 Peak Widths ạnd Resolving Power for a Diffraction Grating
    • 31-10 X-Rays and X-Ray Diffraction
    • 31-11 Polarization
    • *31-12 Scattering of Light by the Atmosphere
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 32 SPECIAL THEORY OF RELATIVITY
    • 32-1 Galilean-Newtonian Relativity
    • *32-2 The Michelson-Morley Experiment
    • 32-3 Postulates of the Special Theory of Relativity
    • 32-4 Simultaneity
    • 32-5 Time Dilation and the Twin Paradox
    • 32-6 Length Contraction
    • 32-7 Four-Dimensional Space-Time
    • 32-8 Galilean and Lorentz Transformations
    • 32-9 Relativistic Momentum and Mass
    • 32-10 The Ultimate Speed
    • 32-11 Energy and Mass
    • *32-12 Doppler Shift for Light
    • 32-13 The Impact of Special Relativity
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 33 EARLY QUANTUM THEORY AND MODELS OF THE ATOM
    • 33-1 Planck's Quantum Hypothesis
    • 33-2 Photon Theory of Light and the Photoelectric Effect
    • 33-3 Photons and the Compton Effect
    • 33-4 Photon Interactions
    • 33-5 Wave-Particle Duality
    • 33-6 Wave Nature of Matter
    • *33-7 Electron Microscopes
    • 33-8 Early Models of the Atom
    • 33-9 Atomic Spectra: Key to the Structure of the Atom
    • 33-10 The Bohr Model
    • 33-11 de Broglie's Hypothesis Applied to Atoms
    • SUMMARY
    • OUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 34 QUANTUM MECHANICS
    • 34-1 Quantum Mechanics—A New Theory
    • 34-2 The Wave Function and Its Interpretation
    • 34-3 The Heisenberg Uncertainty Principle
    • 34-4 Philosophic Implications
    • 34-5 The Schrödinger Equation in One Dimension-Time-Índependent Form
    • 34-6 Time-Dependent Schrödinger Equation
    • 34-7 Free Particles
    • 34-8 Particle in an Infinitely Deep Square Well Potential (a Rigid Box)
    • 34-9 Finite Potential Well
    • 34-10 Tunneling through a Barrier
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 35 QUANTUM MECHANICS OF ATOMS
    • 35-1 Quantum-Mechanical View of Atoms
    • 35-2 Hydrogen Atom: Schrödinger Equation and Quantum Numbers
    • 35-3 Hydrogen Atom Wave Functions
    • 35-4 Complex Atoms
    • 35-5 The Periodic Table of Elements
    • 35-6 X-Ray Spectra and Atomic Number
    • 35-7 Magnetic Dipole Moments: Total Angular Momentum
    • *35-8 Fluorescence and Phosphorescence
    • *35-9 Lasers
    • *35-10 Holography
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • 36 MOLECULES AND SOUDS
    • 36-1 Bonding in Molecules
    • 36-2 Potential-Energy Diagrams for Molecules
    • 36-3 Weak (van der Waals) Bonds
    • 36-4 Molecular Spectra
    • 36-5 Bonding in Solids
    • 36-6 Free-Electron Theory of Metals
    • 36-7 Band Theory of Solids
    • 36-8 Semiconductors and Doping
    • *36-9 Semiconductor Diodes
    • *36-10 Transistors and Integrated Circuits
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
    • GENERAL PROBLEMS
  • *37 RADIOACTIVIY NUCLEAR PHYSICS AND
    • 37-1 Structure and Properties of the Nucleus
    • 37-2 Binding Energy and Nuclear Forces
    • 37-3 Radioactivity
    • 37-4 Alpha Decay
    • 37-5 Beta Decay
    • 37-6 Gamma Decay
    • 37-7 fonservation of Nucleon Number and Other Conservation Laws
    • 37-8 Half-Life and Rate of Decay
    • 37-9 Decay Series
    • 37-10 Radioactive Dating
    • 37-11 Detection of Radiation
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
  • *38 NUCLEAR ENERGY
    • 38-1 Nuclear Reactions and the Transmutation of Elements
    • 38-2 Cross Section
    • 38-3 Nuclear Fission
    • 38-4 Fusion
    • SUMMARY
    • QUESTIONS
    • PROBLEMS
  • *39 ELEMENTARY PARTICLES
    • 39-1 High-Energy Particles
    • 39-2 Particle Accelerators and Detectors
    • 39-3 Beginnings of Elementary Particle Physics-Particle Exchange
    • 39-4 Particles and Antiparticles
    • 39-5 Particle Interactions and Conservation Laws
    • 39-6 Particle Classification
    • 39-7 Particle Stability and Resonances
    • 39-8 Strange Particles
    • 39-9 Quarks
    • 39-10 The "Standard Model”: Quantum Chromodynamics (QCD) and the Electroweak Theory
    • 39-11 Grand Unified Theories
    • QUESTIONS
  • *40 ASTROPHYSICS AND COSMOLOGY
    • 40-1 Stars and Galaxies
    • 40-2 Stellar Evolution
    • 40-3 General Relativity: Gravity and the Curvature of Space
    • 40-4 The Expanding Universe
    • 40-5 The Big Bang and the Cosmic Microwave Background
    • 40-6 The Standard Cosmological Model: The Early History of the Universe
    • 40-7 The Future of the Universe?
    • QUESTIONS
  • APPENDICES
    • A MATHEMATICAL FORMULAS
      • A-1 Quadratic Formula
      • A-2 Binomial Expansion
      • A-3 Other Expansions
      • A-4 Areas and Volumes
      • A-5 Plane Geometry
      • A-6 Trigonometric Functions and Identities
      • A-7 Logarithms
      • A-8 Vectors
    • B DERIVATIVES AND INTEGRALS
      • B-1 Derivatives: General Rules
      • B-2 Derivatives: Particular Functions
      • B-3 Indefinite Integrals: General Rules
      • B-4 Indefinite Integrals: Particular Functions
      • B-5 A few Definite Integrals
    • C GRAVITATIONAL FORCE DUE TO A SPHERICAL MASs DISTRIBUTION
  • ANSWERS TO PARTS OF PROBLEMS

相关图书