图书详情
登录
图书信息
图书目录
例外群及其几何(英文版)Exceptional groups and their geometry
暂无简介
购买:
作者:
[德]Bruce Hunt
定价:
299.00元
出版时间:
2025-04-29
ISBN:
978-7-04-063618-5
物料号:
63618-00
读者对象:
学术著作
一级分类:
自然科学
二级分类:
数学与统计
三级分类:
代数几何学
重点项目:
暂无
版面字数:
1200.00千字
开本:
16开
全书页数:
暂无
装帧形式:
精装
前辅文
Introduction
1 The classical groups
1.1 The classical compact simple Lie groups
1.1.1 Maximal Tori and the Weyl group
1.1.2 Principal bundles and classifying spaces
1.1.3 Lie algebras of classical type
1.2 Real Lie algebras and groups of classical type
1.2.1 Involutions
1.2.2 Real forms
1.3 Q-Lie algebras and arithmetic groups of classical type
1.3.1 Classification theorem
1.3.2 The Q-forms for groups of classical type
1.3.3 Picard modular groups
1.3.4 Siegel modular groups
1.4 Arithmetic quotients of Riemannian symmetric spaces
1.4.1 Commensurability
1.4.2 Picard modular varieties
1.4.2.1 Compactification
1.4.2.2 Picard modular groups
1.4.3 Siegel modular varieties
Part I Exceptional algebraic and Lie groups
2 Composition algebras and octonions
2.1 Alternative algebras
2.2 Composition algebras
2.2.1 Quaternion algebras
2.2.2 Octonion algebras
2.3 The automorphism group of an octonion algebra
2.4 Derivations of an octonion algebra
2.5 Octonions and Clifford algebras
2.6 Triality
2.7 Lattices
2.7.1 The octavians, the ring of octonion integers
2.7.2 Octonions and the Leech lattice
2.8 The projective octonion line and Bott periodicity
3 Exceptional Jordan algebras and F4
3.1 Jordan algebras
3.2 Classification
3.3 Jordan triple systems
3.4 Albert algebras
3.4.1 Algebras of type f4 and groups of type F4
3.5 Orders in Jordan algebras
4 The exceptional complex Lie groups and their real forms
4.1 The Tits-Vinberg-Atsuyama constructions
4.2 Adams’ construction
4.2.1 Spin representations
4.2.2 Construction of E8
4.2.3 Other exceptional groups
4.3 Freudenthal’s construction
4.3.1 Type G2
4.3.2 Type E8
4.3.3 Type E7
4.3.4 Type E6
5 Q-forms and arithmetic subgroups of exceptional groups
5.1 Twisted composition algebras and exceptional D4
5.2 Descriptions of the Q-forms for E6, E7
6 Cohomology of exceptional Lie groups and homogeneous spaces
6.1 Generators of cohomology
6.2 Exceptional Hermitian symmetric spaces
6.2.1 The exceptional compact Hermitian symmetric spaces
6.2.2 The exceptional bounded symmetric domains
6.3 Some geometry of exceptional homogeneous spaces
6.3.1 G2
6.3.2 F4
6.3.3 E6
6.3.4 E7
6.3.5 E8
6.4 Cohomology of the exceptional groups
7 Exceptional groups and projective planes
7.1 Real projective spaces
7.2 Projective planes
7.2.1 Complex projective planes
7.2.2 Generalized projective planes
7.2.3 Quaternionic projective planes
7.2.4 Octonionic projective planes
Part II Applications of exceptional groups
8 Applications of octonions and exceptional Lie groups in theoretical physics
8.1 Division algebras and the standard model in theoretical physics
8.1.1 The geometry of division algebras and related algebras
8.1.1.1 The Hamiltonian quaternions
8.1.1.2 The Cayley-Graves algebra of octonions
8.1.2 Division algebras and Clifford algebras
8.1.3 The algebra of octonions
8.1.4 The physics of octonions
8.1.4.1 Symmetry groups
8.1.4.2 Field content
8.1.4.3 Gauge fields
8.1.4.4 Symmetry breaking
8.1.4.5 Three generations
8.2 Division algebras and particles
8.2.1 The Pauli algebra
8.2.2 The algebra
8.2.3 More Clifford algebras and the Dixon algebra T
8.2.4 Three generations
8.3 Jordan algebras and the standard model
8.3.1 H2(H) and the electro-weak force
8.3.2 H2(O): one generation of standard model particles
8.3.3 H3(O) and the strong force
8.3.4 Triality and three generations
8.4 Exceptional homogeneous spaces arising from compactifications of supergravity
8.4.1 Dimensional reduction and Kaluza-Klein theory
8.4.2 Normed division algebras and physics in dimensions D = 3,4,6,10
8.4.3 Super Yang-Mills
8.4.4 Magic pyramids
8.4.5 D = 11 supergravity expressed in octonions
8.4.6 Symmetric spaces and supergravity theories
8.4.7 Exceptional field theory (ExFT)
8.4.7.1 The bosonic sector
8.4.7.2 The fermionic sector
8.4.7.3 Embedding other known theories in E(8)8 ExFT
8.5 Some other occurrences of exceptional groups
8.5.1 1976: GUT and exceptional groups
8.5.2 1985: The heterotic string, Virasoro algebra and Kac-Moody algebras
8.5.3 1995: Exceptional structures in the context of string dualities
8.5.4 2010: Cayley plane bundles and fields in M-theory
8.5.5 2022: Fitting the standard model in E8(-24)
8.5.6 Condensed matter physics: E8 and the Ising model
9 Applications of exceptional groups in algebraic geometry
9.1 Unimodular surface singularities and orbits of Lie groups in the adjoint representation
9.1.1 Rational double points
9.1.2 Orbits of the adjoint representation
9.1.2.1 Kähler homogeneous spaces
9.1.2.2 The adjoint quotient
9.1.2.3 Regular, subregular and unipotent elements
9.1.3 Simultaneous resolution of the adjoint quotient
9.1.4 Singularities of the subregular orbit
9.1.5 Semiuniversal deformations of rational double points
9.1.6 Deformations of exceptional singularities
9.2 Arrangements
9.2.1 Geometry of an arrangement
9.2.2 Projective arrangements
9.2.3 The Fermat covers associated with a projective arrangement
9.2.4 Arrangements defined by reflection groups
9.3 The Weyl group W(F4) and related geometry
9.3.1 The arrangement
9.3.2 Invariants
9.3.3 A ball quotient derived from theW(F4) arrangement
9.4 The Weyl group W(A5) and related geometry
9.4.1 The arrangement
9.4.2 Symmetric varieties
9.5 The Weyl group W(E6) and related geometry
9.5.1 The 27 lines on a smooth cubic surface
9.5.2 The arrangement of W(E6)
9.5.3 Invariant varieties
9.6 The Weyl group W(E7) and related geometry
9.6.1 The 28 bitangents of a smooth quartic in the plane
9.6.2 The 27 lines and the 28 bitangents
9.6.3 The root system of E7
9.6.4 The arrangement of W(E7)
9.6.4.1 63 hyperplanes and 63 points
9.6.4.2 28 hyperplanes and 28 points
9.6.4.3 336 P4’s and 336 lines
9.6.4.4 315 P3’s and 315 P2’s
9.6.4.5 378 lines
9.6.5 Invariants of W(E7)
9.7 The Weyl group W(E8) and related geometry
9.7.1 The 240 sections of a rational elliptic surface
9.7.2 The root system of E8
9.7.3 The arrangement of W(E8)
9.7.3.1 120 P6’s and 120 points
9.7.3.2 1120 P5’s and 1120 lines
9.7.3.3 7560 P4’s and 7560 P2’s
9.7.3.4 24 192 P3’s and skew lines on the cubic surface
9.7.3.5 3150 P3’s and the tritangents of a cubic surface
9.7.3.6 8640 points and E8-Steiner complexes
9.7.3.7 1080 points
9.7.3.8 3360 points
9.8 Solving algebraic equations and the resolvent degree
9.8.1 Modern formulation
9.8.2 Versal G-spaces for exceptional Weyl groups
9.9 Del Pezzo surfaces
9.9.1 Point sets
9.9.2 The Weyl group of a generalized del Pezzo variety
9.9.3 Del Pezzo surfaces
9.9.4 Moduli spaces
9.10 K3 surfaces
Part III Appendices
10 Root systems
11 Fiber bundles and homogeneous spaces
11.1 Topological results
11.1.1 Invariants
11.1.2 Hopf’s theorem on the cohomology of Lie groups
11.1.3 G-spaces
11.1.4 The Leray spectral sequence
11.2 Lie groups and representations
11.2.1 The Lie algebra
11.2.2 Representations
11.2.2.1 Unitary representations
11.2.2.2 Weight and root lattices
11.2.2.3 Classification: highest weights and Weyl’s unitary trick
11.2.2.4 Induced representations
11.2.3 Maximal subgroups of semi-simple Lie groups
12 Clifford algebras
12.1 Algebraic formulation
12.2 Minkowski space
12.3 Bott periodicity
12.4 Spin, semispin and orthogonal groups
12.5 Spin representations
12.6 Gamma matrices
13 Some algebraic geometry
13.1 Plane curves
13.2 Singularities and resolutions
13.2.1 Singularities
13.2.2 Resolutions
13.3 Algebraic groups
13.4 Moduli spaces
13.4.1 The notion of moduli space
13.4.2 Abelian varieties
13.4.3 Bounded symmetric domains and Hermitian symmetric spaces
13.5 Ball quotients
13.5.1 The Yau inequality
13.5.2 Criteria for ball quotients
13.5.3 Höfer’s theory
14 Classical and quantum mechanics and field theory
14.1 Group representations and physics
14.2 Lagrangian and Hamiltonian mechanics
14.2.1 Classical mechanics
14.2.2 Field theories
14.3 Electromagnetics
14.3.1 Maxwell’s equations
14.3.2 Potentials
14.4 Gravity
14.4.1 Minkowski space
14.4.2 Unitary representations of the Poincar´e group
14.4.3 Special relativity
14.4.4 Relativistic electromagnetism
14.4.5 Gravity
14.5 Quantization
14.5.1 Postulates of quantum mechanics
14.5.2 Angular momentum, spin and the Pauli equation
14.5.3 Relativistic quantum mechanics
14.6 Gauge theories
14.6.1 Local and global symmetries
14.6.2 Symmetry breaking
14.7 Quantum field theory
14.7.1 Physics intuition
14.7.2 Mathematical formulation
14.7.3 The standard model
14.7.3.1 Particle content
14.7.3.2 Lagrangian
14.7.3.3 Gauge bosons and symmetry breaking
14.7.3.4 Problems with the standard model
14.8 Supersymmetry and supergravity
14.8.1 The algebra of supersymmetry
14.8.1.1 Representations of the supersymmetry algebra
14.8.1.2 Transformation properties
14.8.2 Supergravity
14.8.3 D = 11 supergravity
14.9 Superstrings and compactifications
14.9.1 The bosonic string
14.9.2 The Virasoro algebra
14.9.3 Quantization
14.9.4 Superstrings and the super-Virasoro algebra
14.9.5 The 5 superstring theories
14.10 Dualities
References
Index
插图
相关图书
Algebraic Varieties(代数簇)(英文版)
Eduard Looijenga
¥69.00
收藏
Analytic Methods in Algebraic Geometry代数几何中的解析方法
Jean-Pierre Demailly
¥79.00
收藏
Handbook of Moduli Vol. II (模手册 卷 II ) (英文版)
Gavril Farkas, Ian Morrison
¥128.00
收藏
Handbook of Moduli Vol. I (模手册 卷 I ) (英文版)
Gavril Farkas , Ian Morrison
¥128.00
收藏
Handbook of Moduli Vol. III (模手册 卷 III) (英文版)
Gavril Farkas, Ian Morrison
¥128.00
收藏
Open Problems in Arithmetic Algebraic Geometry(算术代数几何中的未解决问题)(英文版)
Frans Oort
¥118.00
收藏
二十面体和5次方程的解的讲义(英文版)
Felix Klein
¥168.00
收藏
二次型的代数和几何理论(影印版)
Richard Elman, Nikita Karpenko, Alexander Merkurjev
¥169.00
收藏
代数几何(英文版,第三版)
扶磊
¥89.00
收藏
代数几何(英文版,第二版)
扶磊
¥89.00
收藏
完全交上的孤立奇点 (第二版)(英文版)(Isolated Singular Points on Complete Intersections)
E.J. N. Looijenga
¥49.00
收藏
线性算子分解和Banach空间的几何(影印版)
Gilles Pisier
¥99.00
收藏
黎曼曲面和热带曲线的模空间导引(英文版)
Lizhen Ji,Eduard Looijenga
¥69.00
收藏
样章阅读