图书信息
图书目录

例外群及其几何(英文版)Exceptional groups and their geometry


暂无简介


作者:
[德]Bruce Hunt

定价:
299.00元

出版时间:
2025-04-29

ISBN:
978-7-04-063618-5

物料号:
63618-00

读者对象:
学术著作

一级分类:
自然科学

二级分类:
数学与统计

三级分类:
代数几何学

重点项目:
暂无

版面字数:
1200.00千字

开本:
16开

全书页数:
暂无

装帧形式:
精装
  • 前辅文
  • Introduction
  • 1 The classical groups
    • 1.1 The classical compact simple Lie groups
      • 1.1.1 Maximal Tori and the Weyl group
      • 1.1.2 Principal bundles and classifying spaces
      • 1.1.3 Lie algebras of classical type
    • 1.2 Real Lie algebras and groups of classical type
      • 1.2.1 Involutions
      • 1.2.2 Real forms
    • 1.3 Q-Lie algebras and arithmetic groups of classical type
      • 1.3.1 Classification theorem
      • 1.3.2 The Q-forms for groups of classical type
      • 1.3.3 Picard modular groups
      • 1.3.4 Siegel modular groups
    • 1.4 Arithmetic quotients of Riemannian symmetric spaces
      • 1.4.1 Commensurability
      • 1.4.2 Picard modular varieties
        • 1.4.2.1 Compactification
        • 1.4.2.2 Picard modular groups
      • 1.4.3 Siegel modular varieties
  • Part I Exceptional algebraic and Lie groups
    • 2 Composition algebras and octonions
      • 2.1 Alternative algebras
      • 2.2 Composition algebras
        • 2.2.1 Quaternion algebras
        • 2.2.2 Octonion algebras
      • 2.3 The automorphism group of an octonion algebra
      • 2.4 Derivations of an octonion algebra
      • 2.5 Octonions and Clifford algebras
      • 2.6 Triality
      • 2.7 Lattices
        • 2.7.1 The octavians, the ring of octonion integers
        • 2.7.2 Octonions and the Leech lattice
      • 2.8 The projective octonion line and Bott periodicity
    • 3 Exceptional Jordan algebras and F4
      • 3.1 Jordan algebras
      • 3.2 Classification
      • 3.3 Jordan triple systems
      • 3.4 Albert algebras
        • 3.4.1 Algebras of type f4 and groups of type F4
      • 3.5 Orders in Jordan algebras
    • 4 The exceptional complex Lie groups and their real forms
      • 4.1 The Tits-Vinberg-Atsuyama constructions
      • 4.2 Adams’ construction
        • 4.2.1 Spin representations
        • 4.2.2 Construction of E8
        • 4.2.3 Other exceptional groups
      • 4.3 Freudenthal’s construction
        • 4.3.1 Type G2
        • 4.3.2 Type E8
        • 4.3.3 Type E7
        • 4.3.4 Type E6
    • 5 Q-forms and arithmetic subgroups of exceptional groups
      • 5.1 Twisted composition algebras and exceptional D4
      • 5.2 Descriptions of the Q-forms for E6, E7
    • 6 Cohomology of exceptional Lie groups and homogeneous spaces
      • 6.1 Generators of cohomology
      • 6.2 Exceptional Hermitian symmetric spaces
        • 6.2.1 The exceptional compact Hermitian symmetric spaces
        • 6.2.2 The exceptional bounded symmetric domains
      • 6.3 Some geometry of exceptional homogeneous spaces
        • 6.3.1 G2
        • 6.3.2 F4
        • 6.3.3 E6
        • 6.3.4 E7
        • 6.3.5 E8
      • 6.4 Cohomology of the exceptional groups
    • 7 Exceptional groups and projective planes
      • 7.1 Real projective spaces
      • 7.2 Projective planes
        • 7.2.1 Complex projective planes
        • 7.2.2 Generalized projective planes
        • 7.2.3 Quaternionic projective planes
        • 7.2.4 Octonionic projective planes
  • Part II Applications of exceptional groups
    • 8 Applications of octonions and exceptional Lie groups in theoretical physics
      • 8.1 Division algebras and the standard model in theoretical physics
        • 8.1.1 The geometry of division algebras and related algebras
          • 8.1.1.1 The Hamiltonian quaternions
          • 8.1.1.2 The Cayley-Graves algebra of octonions
        • 8.1.2 Division algebras and Clifford algebras
        • 8.1.3 The algebra of octonions
        • 8.1.4 The physics of octonions
          • 8.1.4.1 Symmetry groups
          • 8.1.4.2 Field content
          • 8.1.4.3 Gauge fields
          • 8.1.4.4 Symmetry breaking
          • 8.1.4.5 Three generations
      • 8.2 Division algebras and particles
        • 8.2.1 The Pauli algebra
        • 8.2.2 The algebra
        • 8.2.3 More Clifford algebras and the Dixon algebra T
        • 8.2.4 Three generations
      • 8.3 Jordan algebras and the standard model
        • 8.3.1 H2(H) and the electro-weak force
        • 8.3.2 H2(O): one generation of standard model particles
        • 8.3.3 H3(O) and the strong force
        • 8.3.4 Triality and three generations
      • 8.4 Exceptional homogeneous spaces arising from compactifications of supergravity
        • 8.4.1 Dimensional reduction and Kaluza-Klein theory
        • 8.4.2 Normed division algebras and physics in dimensions D = 3,4,6,10
        • 8.4.3 Super Yang-Mills
        • 8.4.4 Magic pyramids
        • 8.4.5 D = 11 supergravity expressed in octonions
        • 8.4.6 Symmetric spaces and supergravity theories
        • 8.4.7 Exceptional field theory (ExFT)
        • 8.4.7.1 The bosonic sector
        • 8.4.7.2 The fermionic sector
        • 8.4.7.3 Embedding other known theories in E(8)8 ExFT
      • 8.5 Some other occurrences of exceptional groups
        • 8.5.1 1976: GUT and exceptional groups
        • 8.5.2 1985: The heterotic string, Virasoro algebra and Kac-Moody algebras
        • 8.5.3 1995: Exceptional structures in the context of string dualities
        • 8.5.4 2010: Cayley plane bundles and fields in M-theory
        • 8.5.5 2022: Fitting the standard model in E8(-24)
        • 8.5.6 Condensed matter physics: E8 and the Ising model
    • 9 Applications of exceptional groups in algebraic geometry
      • 9.1 Unimodular surface singularities and orbits of Lie groups in the adjoint representation
        • 9.1.1 Rational double points
        • 9.1.2 Orbits of the adjoint representation
          • 9.1.2.1 Kähler homogeneous spaces
          • 9.1.2.2 The adjoint quotient
          • 9.1.2.3 Regular, subregular and unipotent elements
        • 9.1.3 Simultaneous resolution of the adjoint quotient
        • 9.1.4 Singularities of the subregular orbit
        • 9.1.5 Semiuniversal deformations of rational double points
        • 9.1.6 Deformations of exceptional singularities
      • 9.2 Arrangements
        • 9.2.1 Geometry of an arrangement
        • 9.2.2 Projective arrangements
        • 9.2.3 The Fermat covers associated with a projective arrangement
        • 9.2.4 Arrangements defined by reflection groups
      • 9.3 The Weyl group W(F4) and related geometry
        • 9.3.1 The arrangement
        • 9.3.2 Invariants
        • 9.3.3 A ball quotient derived from theW(F4) arrangement
      • 9.4 The Weyl group W(A5) and related geometry
        • 9.4.1 The arrangement
        • 9.4.2 Symmetric varieties
      • 9.5 The Weyl group W(E6) and related geometry
        • 9.5.1 The 27 lines on a smooth cubic surface
        • 9.5.2 The arrangement of W(E6)
        • 9.5.3 Invariant varieties
      • 9.6 The Weyl group W(E7) and related geometry
        • 9.6.1 The 28 bitangents of a smooth quartic in the plane
        • 9.6.2 The 27 lines and the 28 bitangents
        • 9.6.3 The root system of E7
        • 9.6.4 The arrangement of W(E7)
          • 9.6.4.1 63 hyperplanes and 63 points
          • 9.6.4.2 28 hyperplanes and 28 points
          • 9.6.4.3 336 P4’s and 336 lines
          • 9.6.4.4 315 P3’s and 315 P2’s
          • 9.6.4.5 378 lines
        • 9.6.5 Invariants of W(E7)
      • 9.7 The Weyl group W(E8) and related geometry
        • 9.7.1 The 240 sections of a rational elliptic surface
        • 9.7.2 The root system of E8
        • 9.7.3 The arrangement of W(E8)
          • 9.7.3.1 120 P6’s and 120 points
          • 9.7.3.2 1120 P5’s and 1120 lines
          • 9.7.3.3 7560 P4’s and 7560 P2’s
          • 9.7.3.4 24 192 P3’s and skew lines on the cubic surface
          • 9.7.3.5 3150 P3’s and the tritangents of a cubic surface
          • 9.7.3.6 8640 points and E8-Steiner complexes
          • 9.7.3.7 1080 points
          • 9.7.3.8 3360 points
      • 9.8 Solving algebraic equations and the resolvent degree
        • 9.8.1 Modern formulation
        • 9.8.2 Versal G-spaces for exceptional Weyl groups
      • 9.9 Del Pezzo surfaces
        • 9.9.1 Point sets
        • 9.9.2 The Weyl group of a generalized del Pezzo variety
        • 9.9.3 Del Pezzo surfaces
        • 9.9.4 Moduli spaces
      • 9.10 K3 surfaces
  • Part III Appendices
    • 10 Root systems
    • 11 Fiber bundles and homogeneous spaces
      • 11.1 Topological results
        • 11.1.1 Invariants
        • 11.1.2 Hopf’s theorem on the cohomology of Lie groups
        • 11.1.3 G-spaces
        • 11.1.4 The Leray spectral sequence
      • 11.2 Lie groups and representations
        • 11.2.1 The Lie algebra
        • 11.2.2 Representations
          • 11.2.2.1 Unitary representations
          • 11.2.2.2 Weight and root lattices
          • 11.2.2.3 Classification: highest weights and Weyl’s unitary trick
          • 11.2.2.4 Induced representations
        • 11.2.3 Maximal subgroups of semi-simple Lie groups
    • 12 Clifford algebras
      • 12.1 Algebraic formulation
      • 12.2 Minkowski space
      • 12.3 Bott periodicity
      • 12.4 Spin, semispin and orthogonal groups
      • 12.5 Spin representations
      • 12.6 Gamma matrices
    • 13 Some algebraic geometry
      • 13.1 Plane curves
      • 13.2 Singularities and resolutions
        • 13.2.1 Singularities
        • 13.2.2 Resolutions
      • 13.3 Algebraic groups
      • 13.4 Moduli spaces
        • 13.4.1 The notion of moduli space
        • 13.4.2 Abelian varieties
        • 13.4.3 Bounded symmetric domains and Hermitian symmetric spaces
      • 13.5 Ball quotients
        • 13.5.1 The Yau inequality
        • 13.5.2 Criteria for ball quotients
        • 13.5.3 Höfer’s theory
    • 14 Classical and quantum mechanics and field theory
      • 14.1 Group representations and physics
      • 14.2 Lagrangian and Hamiltonian mechanics
        • 14.2.1 Classical mechanics
        • 14.2.2 Field theories
      • 14.3 Electromagnetics
        • 14.3.1 Maxwell’s equations
        • 14.3.2 Potentials
      • 14.4 Gravity
        • 14.4.1 Minkowski space
        • 14.4.2 Unitary representations of the Poincar´e group
        • 14.4.3 Special relativity
        • 14.4.4 Relativistic electromagnetism
        • 14.4.5 Gravity
      • 14.5 Quantization
        • 14.5.1 Postulates of quantum mechanics
        • 14.5.2 Angular momentum, spin and the Pauli equation
        • 14.5.3 Relativistic quantum mechanics
      • 14.6 Gauge theories
        • 14.6.1 Local and global symmetries
        • 14.6.2 Symmetry breaking
      • 14.7 Quantum field theory
        • 14.7.1 Physics intuition
        • 14.7.2 Mathematical formulation
        • 14.7.3 The standard model
          • 14.7.3.1 Particle content
          • 14.7.3.2 Lagrangian
          • 14.7.3.3 Gauge bosons and symmetry breaking
          • 14.7.3.4 Problems with the standard model
      • 14.8 Supersymmetry and supergravity
        • 14.8.1 The algebra of supersymmetry
          • 14.8.1.1 Representations of the supersymmetry algebra
          • 14.8.1.2 Transformation properties
        • 14.8.2 Supergravity
        • 14.8.3 D = 11 supergravity
      • 14.9 Superstrings and compactifications
        • 14.9.1 The bosonic string
        • 14.9.2 The Virasoro algebra
        • 14.9.3 Quantization
        • 14.9.4 Superstrings and the super-Virasoro algebra
        • 14.9.5 The 5 superstring theories
      • 14.10 Dualities
  • References
  • Index
  • 插图