量子力学中的数学方法:Schrödinger算子的应用(影印版)
暂无简介
- 前辅文
- Preface
- Part 0. Preliminaries
- Chapter 0. A first look at Banach and Hilbert spaces
- 0.1. Warm up: Metric and topological spaces
- 0.2. The Banach space of continuous functions
- 0.3. The geometry of Hilbert spaces
- 0.4. Completeness
- 0.5. Bounded operators
- 0.6. Lebesgue Lp spaces
- 0.7. Appendix: The uniform boundedness principle
- Part 1. Mathematical Foundations of Quantum Mechanics
- Chapter 1. Hilbert spaces
- 1.1. Hilbert spaces
- 1.2. Orthonormal bases
- 1.3. The projection theorem and the Riesz lemma
- 1.4. Orthogonal sums and tensor products
- 1.5. The C* algebra of bounded linear operators
- 1.6. Weak and strong convergence
- 1.7. Appendix: The Stone–Weierstraß theorem
- Chapter 2. Self-adjointness and spectrum
- 2.1. Some quantum mechanics
- 2.2. Self-adjoint operators
- 2.3. Quadratic forms and the Friedrichs extension
- 2.4. Resolvents and spectra
- 2.5. Orthogonal sums of operators
- 2.6. Self-adjoint extensions
- 2.7. Appendix: Absolutely continuous functions
- Chapter 3. The spectral theorem
- 3.1. The spectral theorem
- 3.2. More on Borel measures
- 3.3. Spectral types
- 3.4. Appendix: Herglotz–Nevanlinna functions
- Chapter 4. Applications of the spectral theorem
- 4.1. Integral formulas
- 4.2. Commuting operators
- 4.3. Polar decomposition
- 4.4. The min-max theorem
- 4.5. Estimating eigenspaces
- 4.6. Tensor products of operators
- Chapter 5. Quantum dynamics
- 5.1. The time evolution and Stone’s theorem
- 5.2. The RAGE theorem
- 5.3. The Trotter product formula
- Chapter 6. Perturbation theory for self-adjoint operators
- 6.1. Relatively bounded operators and the Kato–Rellich theorem
- 6.2. More on compact operators
- 6.3. Hilbert–Schmidt and trace class operators
- 6.4. Relatively compact operators and Weyl’s theorem
- 6.5. Relatively form-bounded operators and the KLMN theorem
- 6.6. Strong and norm resolvent convergence
- Part 2. Schrödinger Operators
- Chapter 7. The free Schrödinger operator
- 7.1. The Fourier transform
- 7.2. Sobolev spaces
- 7.3. The free Schrödinger operator
- 7.4. The time evolution in the free case
- 7.5. The resolvent and Green’s function
- Chapter 8. Algebraic methods
- 8.1. Position and momentum
- 8.2. Angular momentum
- 8.3. The harmonic oscillator
- 8.4. Abstract commutation
- Chapter 9. One-dimensional Schrödinger operators
- 9.1. Sturm–Liouville operators
- 9.2. Weyl’s limit circle, limit point alternative
- 9.3. Spectral transformations I
- 9.4. Inverse spectral theory
- 9.5. Absolutely continuous spectrum
- 9.6. Spectral transformations II
- 9.7. The spectra of one-dimensional Schrödinger operators
- Chapter 10. One-particle Schrödinger operators
- 10.1. Self-adjointness and spectrum
- 10.2. The hydrogen atom
- 10.3. Angular momentum
- 10.4. The eigenvalues of the hydrogen atom
- 10.5. Nondegeneracy of the ground state
- Chapter 11. Atomic Schrödinger operators
- 11.1. Self-adjointness
- 11.2. The HVZ theorem
- Chapter 12. Scattering theory
- 12.1. Abstract theory
- 12.2. Incoming and outgoing states
- 12.3. Schrödinger operators with short range potentials
- Part 3. Appendix
- Appendix A. Almost everything about Lebesgue integration
- A.1. Borel measures in a nutshell
- A.2. Extending a premeasure to a measure
- A.3. Measurable functions
- A.4. How wild are measurable objects?
- A.5. Integration—Sum me up, Henri
- A.6. Product measures
- A.7. Transformation of measures and integrals
- A.8. Vague convergence of measures
- A.9. Decomposition of measures
- A.10. Derivatives of measures
- Bibliographical notes
- Bibliography
- Glossary of notation
- Index