登录
注册
书目下载
联系我们
移动端
扫码关注-登录移动端
帮助中心
高等教育出版社产品信息检索系统
图书产品
数字化产品
期刊产品
会议信息
电子书
线上书展
顶部
首页
图书产品
量子图导论(影印版)
收藏
量子图导论(影印版)
样章
作者:
Gregory Berkolaiko,Peter Kuchment
定价:
135.00元
ISBN:
978-7-04-061260-8
版面字数:
450.000千字
开本:
特殊
全书页数:
暂无
装帧形式:
精装
重点项目:
暂无
出版时间:
2024-02-08
读者对象:
学术著作
一级分类:
自然科学
二级分类:
数学与统计
三级分类:
数学应用
购买:
样章阅读
图书详情
|
图书目录
暂无
前辅文
Preface
Introduction
Chapter 1. Operators on Graphs. Quantum graphs
1.1. Main graph notions and notation
1.2. Difference operators. Discrete Laplace operators
1.3. Metric graphs
1.4. Differential operators on metric graphs. Quantum graphs
1.4.1. Vertex conditions. Finite graphs.
1.4.2. Scale invariance
1.4.3. Quadratic form
1.4.4. Examples of vertex conditions
1.4.5. Infinite graphs
1.4.6. Non-local vertex conditions
1.5. Further remarks and references
Chapter 2. Quantum Graph Operators. Special Topics
2.1. Quantum graphs and scattering matrices
2.1.1. Scattering on vertices
2.1.2. Bond scattering matrix and the secular equation
2.2. First order operators and scattering matrices
2.3. Factorization of quantum graph Hamiltonians
2.4. Index of quantum graph operators
2.5. Dependence on vertex conditions
2.5.1. Variations in the edge lengths
2.6. Magnetic Schrödinger operator
2.7. Further remarks and references
Chapter 3. Spectra of Quantum Graphs
3.1. Basic spectral properties of compact quantum graphs
3.1.1. Discreteness of the spectrum
3.1.2. Dependence on the vertex conditions
3.1.3. Eigenfunction dependence
3.1.4. An Hadamard-type formula
3.1.5. Generic simplicity of the spectrum
3.1.6. Eigenvalue bracketing
3.1.7. Dependence on the coupling constant at a vertex
3.2. The Shnol’ theorem
3.3. Generalized eigenfunctions
3.4. Failure of the unique continuation property. Scars
3.5. The ubiquitous Dirichlet-to-Neumann map
3.5.1. DtN map for a single edge
3.5.2. DtN map for a compact graph with a “boundary”
3.5.3. DtN map for a single vertex boundary
3.5.4. DtN map and the secular equation
3.5.5. DtN map and number of negative eigenvalues
3.6. Relations between quantum and discrete graph spectra
3.7. Trace formulas
3.7.1. Secular equation
3.7.2. Weyl’s law
3.7.3. Derivation of the trace formula
3.7.4. Expansion in terms of periodic orbits
3.7.5. Other formulations of the trace formula
3.8. Further remarks and references
Chapter 4. Spectra of Periodic Graphs
4.1. Periodic graphs
4.2. Floquet-Bloch theory
4.2.1. Floquet transform on combinatorial periodic graphs
4.2.2. Floquet transform of periodic difference operators
4.2.3. Floquet transform on quantum periodic graphs
4.2.4. Floquet transform of periodic operators
4.3. Band-gap structure of spectrum
4.3.1. Discrete case
4.3.2. Quantum graph case
4.3.3. Floquet transform in Sobolev classes
4.4. Absence of the singular continuous spectrum
4.5. The point spectrum
4.6. Where do the spectral edges occur?
4.7. Existence and location of spectral gaps
4.8. Impurity spectra
4.9. Further remarks and references
Chapter 5. Spectra of Quantum Graphs. Special Topics
5.1. Resonant gap opening
5.1.1. “Spider” decorations
5.2. Zeros of eigenfunctions and nodal domains
5.2.1. Some basic results
5.2.2. Bounds on the nodal count
5.2.3. Nodal count for special types of graphs
5.2.4. Nodal deficiency and Morse indices
5.3. Spectral determinants of quantum graphs
5.4. Scattering on quantum graphs
5.5. Further remarks and references
Chapter 6. Quantum Chaos on Graphs
6.1. Classical “motion” on graphs
6.2. Spectral statistics and random matrix theory
6.2.1. Form factor of a unitary matrix
6.2.2. Random matrices
6.3. Spectral statistics of graphs
6.4. Periodic orbit expansions
6.4.1. On time-reversal invariance
6.4.2. Diagonal approximation
6.4.3. The simplest example of an off-diagonal term
6.5. Further remarks and references
Chapter 7. Some Applications and Generalizations
7.1. Inverse problems
7.1.1. Can one hear the shape of a quantum graph?
7.1.2. Quantum graph isospectrality
7.1.3. Can one count the shape of a graph?
7.1.4. Inverse scattering
7.1.5. Discrete “electrical impedance” problem
7.2. Other types of equations on metric graphs
7.2.1. Heat equation
7.2.2. Wave equation
7.2.3. Control theory
7.2.4. Reaction-diffusion equations
7.2.5. Dirac and Rashba operators
7.2.6. Pseudo-differential Hamiltonians
7.2.7. Non-linear Schrödinger equation (NLS)
7.3. Analysis on fractals
7.4. Equations on multistructures
7.5. Graph models of thin structures
7.5.1. Neumann tubes
7.5.2. Dirichlet tubes
7.5.3. “Leaky” structures
7.6. Quantum graph modeling of various physical phenomena
7.6.1. Simulation of quantum graphs by microwave networks
7.6.2. Realizability questions
7.6.3. Spectra of graphene and carbon nanotubes
7.6.4. Vacuum energy and Casimir effect
7.6.5. Anderson localization
7.6.6. Bose-Einstein condensates
7.6.7. Quantum Hall effect
7.6.8. Flat band phenomena and slowing down light
Appendix A. Some Notions of Graph Theory
A.1. Graph, edge, vertex, degree
A.2. Some special graphs
A.3. Graphs and digraphs
A.4. Paths, closed paths, Betti number
A.5. Periodic graph
A.6. Cayley graphs and Schreier graphs
Appendix B. Linear Operators and Operator-Functions
B.1. Some notation concerning linear operators
B.2. Fredholm and semi-Fredholm operators. Fredholm index
B.3. Analytic Fredholm operator functions
B.3.1. Some notions from the several complex variables theory
B.3.2. Analytic Fredholm operator functions
Appendix C. Structure of Spectra
C.1. Classification of the points of the spectrum
C.2. Spectral theorem and spectrum classification
Appendix D. Symplectic Geometry and Extension Theory
Bibliography
Index
相关图书
电磁理论的数学方法(影印版)
Kurt O. Friedrichs
¥99.00
收藏
发育生物学中的数学模型(影印版)
Jerome K. Percus, Stephen Childress
¥135.00
收藏
关于时间:相对论的数学基础(影印版)
Roger Cooke
¥169.00
收藏
免疫学中的数学方法(影印版)
Jerome K. Percus
¥67.00
收藏
选择收货地址
收货人
地址
联系方式
使用新地址
使用新地址
所在地区
请选择
详细地址
收货人
联系电话
设为默认
设为默认收货地址