顶部
收藏

地震学中的成像、模拟与数据同化(英文版)


作者:
郦永刚(Yonggang Li) 主编
定价:
119.00元
ISBN:
978-7-04-034341-0
版面字数:
400.000千字
开本:
16开
全书页数:
262页
装帧形式:
精装
重点项目:
暂无
出版时间:
2012-02-29
物料号:
34341-00
读者对象:
学术著作
一级分类:
自然科学
二级分类:
地球科学
三级分类:
地质学

《全球变化与地球系统科学系列:地震学中的成像、模拟与数据同化(英文版)》介绍地球物理和地震学研究领域内近年发展的数据同化、构造成像和数字模拟的新方法、新技术以及应用实例。全书共七章,由国内外著名大学和研究所从事地震前沿研究工作的人员撰写而成。内容涵盖:

数据同化概念在地震学中的拓展和应用,全波形三维构造成像(full waveform tomography),介质全物理属性和震源机制反演方法;

非均匀介质中衍射波和散射波单返程传播算子(one-return propagator)方法,适用于复杂构造成像;断裂带圈闭波(fault-zone trapped wave)或称导波(guided waves)方法,高精度确定断裂带岩石共震破裂程度和空间尺度以及震后愈合的时间关系;

强震动态断裂过程和震源特性模拟合成的有限元方法平行计算技术(hybrid MPI/OpenMP approach,sophisticated finite-element method algorithm EQdyna),评估地下构造和地面结构抗震的非线性响应和破坏程度;

震区内应力加载和减载的观察,物理原理和加载一减载响应比测定方法(10ad—unIoad response ratio),推算岩石破碎程度和判别临震状态,应用于地震预报;

离散单元计算方法(discrete element method),模拟发震断裂带的力学机制和岩石动态破裂,提供应力加载一减载响应比测定方法的力学基础。

《全球变化与地球系统科学系列:地震学中的成像、模拟与数据同化(英文版)》作者郦永刚分别在各自章节中对上述新方法作了详尽阐述和公式推演,并给出应用实例。本书可作为高等院校和科研院所地球物理学、地震学研究生教学参考书,也可供地震领域的研究人员借鉴。

  • Front Matter
  • Imaging, Modeling and Assimilation in Seismology:An Overview
    • References
  • Chapter 1 Full-Wave Seismic Data Assimilation: A UnifiedMethodology for Seismic Waveform Inversion
    • 1.1 Introduction
    • 1.2 Generalized Inverse
      • 1.2.1 Prior Probability Densities
      • 1.2.2 Bayes’ Theorem
      • 1.2.3 Euler-Lagrange Equations
    • 1.3 Data Functionals
      • 1.3.1 DifferentialWaveforms
      • 1.3.2 Cross-correlation Measurements
      • 1.3.3 Generalized Seismological Data Functionals (GSDF)
    • 1.4 The Adjoint Method
      • 1.4.1 An Example of Adjoint Travel-Time Tomography
      • 1.4.2 Review of Some Recent AdjointWaveform Tomography
    • 1.5 The Scattering-Integral (SI) Method
      • 1.5.1 Full-Wave Tomography Based on SI
      • 1.5.2 Earthquake Source Parameter Inversion Based on SI
    • 1.6 Discussion
      • 1.6.1 Computational Challenges
      • 1.6.2 Nonlinearity
    • 1.7 Summary
    • References
  • Chapter 2 One-Return Propagators and the Applicationsin Modeling and Imaging
    • 2.1 Introduction
    • 2.2 Primary-Only Modeling and One-Return Approximation
    • 2.3 Elastic One-Return Modeling
      • 2.3.1 Local Born Approximation
      • 2.3.2 The Thin Slab Approximation
      • 2.3.3 Small-Angle Approximation and the Screen Propagator
      • 2.3.4 Numerical Implementation
      • 2.3.5 Elastic, Acoustic and Scalar Cases
    • 2.4 Applications of One-Return Propagators in Modeling,Imaging and Inversion .
      • 2.4.1 Applications to Modeling
      • 2.4.2 One-Return Propagators Used in Migration Imaging
      • 2.4.3 Calculate Finite-Frequency Sensitivity Kernels Usedin Velocity Inversion
    • 2.5 Other Development of One-Return Modeling
      • 2.5.1 Super-Wide Angle One-Way Propagator
      • 2.5.2 One-Way Boundary Element Method
    • 2.6 Conclusion
    • References
  • Chapter 3 Fault-Zone TrappedWaves: High-Resolution Characterization ofthe Damage Zone of the Parkfield San Andreas Fault at Depth
    • 3.1 Introduction
    • 3.2 Fault-Zone TrappedWaves at the SAFOD Site
      • 3.2.1 The SAFOD Surface Array
      • 3.2.2 The SAFOD Borehole Seismographs
      • 3.2.3 Finite-Difference Simulation of Fault-Zone TrappedWavesat SAFOD Site
    • 3.3 Fault-Zone TrappedWaves at the Surface Array near Parkfield Town
    • 3.4 Conclusion and Discussion
    • Acknowledgements
    • References
    • Appendix: Modeling Fault-Zone Trapped SH-LoveWaves
  • Chapter 4 Fault-Zone TrappedWaves at a Dip Fault: Documentationof Rock Damage on the Thrusting Longmen-Shan FaultRuptured in the 2008 M8 Wenchuan Earthquake
    • 4.1 Geological Setting and Scientific Significance
    • 4.2 Data and Results
      • 4.2.1 Data Collection
      • 4.2.2 Examples of Waveform Data
    • 4.3 3-D Finite-Difference Investigations of Trapping Efficiencyat the Dipping Fault
      • 4.3.1 Effect of Fault-Zone Dip Angle
      • 4.3.2 Effect of Epicentral Distance
      • 4.3.3 Effect of Source Depth
      • 4.3.4 Effect of Source away from Vertical and Dip Fault Zones
      • 4.3.5 Effect of Fault-ZoneWidth and Velocity Reduction
    • 4.4 3-D Finite-Difference Simulations of FZTWsat the South Longmen-Shan Fault
    • 4.5 Fault Rock Co-Seismic Damage and Post-Mainshock Heal
    • 4.6 Conclusion and Discussion
    • Acknowledgements
    • References
    • Appendix
  • Chapter 5 Ground-Motion Simulations with Dynamic SourceCharacterization and Parallel Computing
    • 5.1 Introduction
    • 5.2 The Spontaneous Rupture Model
    • 5.3 EQdyna: An Explicit Finite ElementMethod for Simulating SpontaneousRupture on Geometrically Complex Faults andWave Propagation in ComplexGeologic Structure
    • 5.4 Two Examples of Ground-Motion Related Applications of EQdyna
      • 5.4.1 Sensitivity of Physical Limits on Ground Motion on YuccaMountain
      • 5.4.2 Effects of Faulting Style Changes on Ground Motion
    • 5.5 Hybrid MPI/OpenMP Parallelization of EQdyna and Its Application to aBenchmark Problem
      • 5.5.1 Element-size Dependence of Solutions
      • 5.5.2 Computational Resource Requirements and PerformanceAnalysis
    • 5.6 Conclusions
    • Acknowledgements
    • References
  • Chapter 6 Load-Unload Response Ratio and Its New Progress
    • 6.1 Introduction
    • 6.2 The Status of Earthquake Prediction Using LURR
    • 6.3 Peak Point of the LURR and Its Significance
    • 6.4 Earthquake Cases in 2008–2009
    • 6.5 Improving the Prediction of Magnitude M and T2-Application ofDimensional Method
      • 6.5.1 Location
      • 6.5.2 Magnitude
      • 6.5.3 Occurrence time (T2)
    • 6.6 Conclusions
    • Acknowledgements
    • References
  • Chapter 7 Discrete Element Method and Its Applicationsin Earthquake and Rock FractureModeling
    • 7.1 Introduction
    • 7.2 A Brief Introduction to the Esys−Particle
    • 7.3 Theoretical and Algorithm Development
      • 7.3.1 The Equations of Particle Motion
      • 7.3.2 Contact Laws, Particle Interactions and Calculationof Forces and Torques
      • 7.3.3 Calibration of the Model
      • 7.3.4 Incorporation of Thermal and Hydrodynamic Effects
      • 7.3.5 Parallel Algorithm
    • 7.4 Some Numerical Results Obtained by Using the Esys−Particle
      • 7.4.1 Earthquakes
      • 7.4.2 Rock fracture
    • 7.5 Coupling of Multiple Physics
      • 7.5.1 Thermal-Mechanical Coupling
      • 7.5.2 Hydro-Mechanical Coupling
      • 7.5.3 Full Solid-Fluid Coupling
    • 7.6 Discussion and Conclusions
    • Acknowledgements
    • References
  • 版权

相关图书