顶部
收藏

压电材料高等力学(英文版)


作者:
Qing-Hua Qin
定价:
89.00元
ISBN:
978-7-04-034497-4
版面字数:
480.000千字
开本:
16开
全书页数:
332页
装帧形式:
精装
重点项目:
暂无
出版时间:
2012-08-20
读者对象:
学术著作
一级分类:
自然科学
二级分类:
力学
三级分类:
固体力学

《压电材料高等力学(英文版)》主要阐述线性压电材料的基本理论和基本研究方法,其中包括Trefftz有限元法、辛力学模型、哈密顿系统;讨论了纤维增 强压电复合材料、压电功能梯度材料、含币型裂纹压电材料、压电材料辛力学等问题。《压电材料高等力学(英文版)》的读者对象是物理、力学和材料类相关专业 的研究人员和研究生。

  • Front Matter
  • Chapter 1 Introduction to Piezoelectricity
    • 1.1 Background
    • 1.2 Linear theory of piezoelectricity
      • 1.2.1 Basic equations in rectangular coordinate system
      • 1.2.2 Boundary conditions
    • 1.3 Functionally graded piezoelectric materials
      • 1.3.1 Types of gradation
      • 1.3.2 Basic equations for two-dimensional FGPMs
    • 1.4 Fibrous piezoelectric composites
    • References
  • Chapter 2 Solution Methods
    • 2.1 Potential function method
    • 2.2 Solution with Lekhnitskii formalism
    • 2.3 Techniques of Fourier transformation
    • 2.4 Trefftz finite element method
      • 2.4.1 Basic equations
      • 2.4.2 Assumed fields
      • 2.4.3 Element stiffness equation
    • 2.5 Integral equations
      • 2.5.1 Fredholm integral equations
      • 2.5.2 Volterra integral equations
      • 2.5.3 Abel’s integral equation
    • 2.6 Shear-lag model
    • 2.7 Hamiltonian method and symplectic mechanics
    • 2.8 State space formulation
    • References
  • Chapter 3 Fibrous Piezoelectric Composites
    • 3.1 Introduction
    • 3.2 Basic formulations for fiber push-out and pull-out tests
    • 3.3 Piezoelectric fiber pull-out
      • 3.3.1 Relationships between matrix stresses and interfacial shear stress
      • 3.3.2 Solution for bonded region
      • 3.3.3 Solution for debonded region
      • 3.3.4 Numerical results
    • 3.4 Piezoelectric fiber push-out
      • 3.4.1 Stress transfer in the bonded region
      • 3.4.2 Frictional sliding
      • 3.4.3 PFC push-out driven by electrical and mechanical loading
      • 3.4.4 Numerical assessment
    • 3.5 Interfacial debonding criterion
    • 3.6 Micromechanics of fibrous piezoelectric composites
      • 3.6.1 Overall elastoelectric properties of FPCs
      • 3.6.2 Extension to include magnetic and thermal effects
    • 3.7 Solution of composite with elliptic fiber
      • 3.7.1 Conformal mapping.
      • 3.7.2 Solutions for thermal loading applied outside an elliptic fiber
      • 3.7.3 Solutions for holes and rigid fibers
    • References
  • Chapter 4 Trefftz Method for Piezoelectricity
    • 4.1 Introduction
    • 4.2 Trefftz FEM for generalized plane problems.
      • 4.2.1 Basic field equations and boundary conditions
      • 4.2.2 Assumed fields
      • 4.2.3 Modified variational principle
      • 4.2.4 Generation of the element stiffness equation
      • 4.2.5 Numerical results
    • 4.3 Trefftz FEM for anti-plane problems
      • 4.3.1 Basic equations for deriving Trefftz FEM
      • 4.3.2 Trefftz functions
      • 4.3.3 Assumed fields
      • 4.3.4 Special element containing a singular corner
      • 4.3.5 Generation of element matrix
      • 4.3.6 Numerical examples
    • 4.4 Trefftz boundary element method for anti-plane problems
      • 4.4.1 Indirect formulation
      • 4.4.2 The point-collocation formulations of Trefftz boundary element method
      • 4.4.3 Direct formulation
      • 4.4.4 Numerical examples
    • 4.5 Trefftz boundary-collocation method for plane piezoelectricity
      • 4.5.1 General Trefftz solution sets
      • 4.5.2 Special Trefftz solution set for a problem with elliptic holes
      • 4.5.3 Special Trefftz solution set for impermeable crack problems
      • 4.5.4 Special Trefftz solution set for permeable crack problems
      • 4.5.5 Boundary collocation formulation
    • References
  • Chapter 5 Symplectic Solutions for Piezoelectric Materials
    • 5.1 Introduction
    • 5.2 A symplectic solution for piezoelectric wedges
      • 5.2.1 Hamiltonian system by differential equation approach
      • 5.2.2 Hamiltonian system by variational principle approach
      • 5.2.3 Basic eigenvalues and singularity of stress and electric fields
      • 5.2.4 Piezoelectric bimaterial wedge
      • 5.2.5 Multi-piezoelectric material wedge
    • 5.3 Extension to include magnetic effect
      • 5.3.1 Basic equations and their Hamiltonian system
      • 5.3.2 Eigenvalues and eigenfunctions
      • 5.3.3 Particular solutions
    • 5.4 Symplectic solution for a magnetoelectroelastic strip
      • 5.4.1 Basic equations
      • 5.4.2 Hamiltonian principle
      • 5.4.3 The zero-eigenvalue solutions
      • 5.4.4 Nonzero-eigenvalue solutions
    • 5.5 Three-dimensional symplectic formulation for piezoelectricity
      • 5.5.1 Basic formulations
      • 5.5.2 Hamiltonian dual equations
      • 5.5.3 The zero-eigenvalue solutions
      • 5.5.4 Sub-symplectic system
      • 5.5.5 Nonzero-eigenvalue solutions
    • 5.6 Symplectic solution for FGPMs
      • 5.6.1 Basic formulations
      • 5.6.2 Eigenvalue properties of the Hamiltonian matrix H
      • 5.6.3 Eigensolutions corresponding to μ =0 and–α
      • 5.6.4 Extension to the case of magnetoelectroelastic materials
    • References
  • Chapter 6 Saint-Venant Decay Problems in Piezoelectricity
    • 6.1 Introduction
    • 6.2 Saint-Venant end effects of piezoelectric strips
      • 6.2.1 Hamiltonian system for a piezoelectric strip
      • 6.2.2 Decay rate analysis
      • 6.2.3 Numerical illustration
    • 6.3 Saint-Venant decay in anti-plane dissimilar laminates
      • 6.3.1 Basic equations for anti-plane piezoelectric problem
      • 6.3.2 Mixed-variable state space formulation
      • 6.3.3 Decay rate of FGPM strip
      • 6.3.4 Two-layered FGPM laminates and dissimilar piezoelectric laminates
    • 6.4 Saint-Venant decay in multilayered piezoelectric laminates
      • 6.4.1 State space formulation
      • 6.4.2 Eigensolution and decay rate equation
    • 6.5 Decay rate of piezoelectric-piezomagnetic sandwich structures
      • 6.5.1 Basic equations and notations in multilayered structures
      • 6.5.2 Space state differential equations for analyzing decay rate
      • 6.5.3 Solutions to the space state differential equations
    • References
  • Chapter 7 Penny-Shaped Cracks
    • 7.1 Introduction
    • 7.2 An infinite piezoelectric material with a penny-shaped crack
    • 7.3 A penny-shaped crack in a piezoelectric strip
    • 7.4 A fiber with a penny-shaped crack embedded in a matrix
    • 7.5 Fundamental solution for penny-shaped crack problem
      • 7.5.1 Potential approach
      • 7.5.2 Solution for crack problem
      • 7.5.3 Fundamental solution for penny-shaped crack problem
    • 7.6 A penny-shaped crack in a piezoelectric cylinder
      • 7.6.1 Problem statement and basic equation.
      • 7.6.2 Derivation of integral equations and their solution
      • 7.6.3 Numerical results and discussion
    • 7.7 A fiber with a penny-shaped crack and an elastic coating
      • 7.7.1 Formulation of the problem
      • 7.7.2 Fredholm integral equation of the problem
      • 7.7.3 Numerical results and discussion
    • References
  • Chapter 8 Solution Methods for Functionally Graded Piezoelectric Materials
    • 8.1 Introduction
    • 8.2 Singularity analysis of angularly graded piezoelectric wedge
      • 8.2.1 Basic formulations and the state space equation
      • 8.2.2 Two AGPM wedges
      • 8.2.3 AGPM-EM-AGPM wedge system
      • 8.2.4 Numerical results and discussion
    • 8.3 Solution to FGPM beams
      • 8.3.1 Basic formulation
      • 8.3.2 Solution procedure
    • 8.4 Parallel cracks in an FGPM strip
      • 8.4.1 Basic formulation
      • 8.4.2 Singular integral equations and field intensity factors
    • 8.5 Mode Ⅲ cracks in two bonded FGPMs
      • 8.5.1 Basic formulation of the problem
      • 8.5.2 Impermeable crack problem
      • 8.5.3 Permeable crack problem
    • References
  • Index
  • 版权

相关图书