顶部
收藏

Foundations of Computer Systems Research(计算机系统研究基础)


作者:
施巍松
定价:
59.00元
ISBN:
978-7-04-029063-9
版面字数:
430.000千字
开本:
16开
全书页数:
267页
装帧形式:
平装
重点项目:
暂无
出版时间:
2010-10-20
读者对象:
高等教育
一级分类:
计算机/教育技术类
二级分类:
计算机科学与技术专业课程

自从计算机问世以来,计算机系统结构的研究重点发生了很多变化,这让一些希望从事这方面研究的新手觉得很难入门。作者根据多年从事研究和指导研究生的经验,把计算机系统研究中最常用的原理和关键技术汇集在一起。在基本知识部分,作者描述了从事系统结构研究的基本要领,包括如何读、写、说,以及英文写作最常见的问题,并给出了12个最经典的设计原理和经验。在关键技术部分,作者从建模、设计、实现和性能评测方面选择了15个关键技术进行了详细的讨论和描述,每一个关键技术的题目都经过精心挑选,并且提供多个实例分析。

本书可供计算机系统结构初学者使用,也可供高年级本科生和研究生在学习有关课程时参考。

  • Front Matter
  • Part I General
  • 1 Elements
    • 1.1 Top Systems Conferences/Journals
    • 1.2 How to Read a Research Paper
    • 1.3 How to Write a Research Paper
      • 1.3.1 Abstract
      • 1.3.2 Introduction
      • 1.3.3 Background Information/Problem Statement
      • 1.3.4 Your Approach
      • 1.3.5 Implementation
      • 1.3.6 Performance Evaluation
      • 1.3.7 Related Work
      • 1.3.8 Conclusions
      • 1.3.9 Acknowledgement
      • 1.3.10 References
      • 1.3.11 Most Common Mistakes in Paper Writing
    • 1.4 How to Give a Presentation
      • 1.4.1 General Approach
      • 1.4.2 Understanding the Paper
      • 1.4.3 Adapting the Paper for Presentation
      • 1.4.4 Slides
      • 1.4.5 The Dry-Run
      • 1.4.6 To Memorize or not to Memorize?
      • 1.4.7 You Are on the Stage
      • 1.4.8 Interacting with the Audience and Dealing with Questions
    • 1.5 Final Words: On Being a Scientist
    • References
  • 2 Rules of Thumb
    • 2.1 Rules of Thumb
    • 2.2 Further Readings
    • References
  • Part II Design
  • 3 Bloom Filters
    • 3.1 Introduction
    • 3.2 Standard Bloom Filters
      • 3.2.1 Basic Idea of Bloom Filters
      • 3.2.2 False Positive Rate Estimation
      • 3.2.3 Optimal Number of Hash Functions
      • 3.2.4 Another Method of Implementing
    • 3.3 Counting Bloom Filters
    • 3.4 Compressed Bloom Filters
    • 3.5 D -left Counting Bloom Filters
      • 3.5.1 D-left Hashing
      • 3.5.2 D-left Counting Bloom Filters
      • 3.5.3 Performance
    • 3.6 Spectral Bloom Filters
      • 3.6.1 Basic Principle of SBF
      • 3.6.2 SBF Frequency Query Optimization
    • 3.7 Dynamic Counting Bloom Filters
    • 3.8 Case Studies
      • 3.8.1 Case Study 1: Summary Cache
      • 3.8.2 Case Study 2: IP Traceback
    • 3.9 Conclusion
    • References
  • 4 Distributed Hash Tables
    • 4.1 Introduction
    • 4.2 An Overview of DHT
    • 4.3 The Overlay Network of DHT
    • 4.4 Chord: An Implementation of DHT
      • 4.4.1 Topology of Chord
      • 4.4.2 Key Lookup in Chord
      • 4.4.3 Dynamic Updates and Failure Recovery
    • 4.5 Case Study 1: Cooperative Domain Name System (CoDoNS)
      • 4.5.1 Background and Motivation
      • 4.5.2 Overview of the System
      • 4.5.3 DHT in CoDoNS
      • 4.5.4 Evaluation
    • 4.6 Case Study 2: Cooperative File System (CFS)
      • 4.6.1 Background and Motivation
      • 4.6.2 Overview of the System
      • 4.6.3 DHT in CFS
      • 4.6.4 Evaluation
    • References
  • 5 Locality Sensitive Hashing
    • 5.1 Introduction
      • 5.1.1 Basic Idea of LSH
      • 5.1.2 The Origin of LSH
    • 5.2 Overview
      • 5.2.1 The Definition
      • 5.2.2 Properties of LSH
      • 5.2.3 Several LSH Families
      • 5.2.4 Approximate Nearest Neighbor
    • 5.3 Case Study 1: Large-Scale Sequence Comparison
      • 5.3.1 Theory
      • 5.3.2 Algorithm Complexity
      • 5.3.3 Implementation Details
      • 5.3.4 Results
    • 5.4 Case Study 2: Image Retrieval
      • 5.4.1 Motivation
      • 5.4.2 The Problems of Existing Approaches
      • 5.4.3 The System
      • 5.4.4 Results
    • References
  • 6 XOR Operations
    • 6.1 Introduction
    • 6.2 XOR Operation
      • 6.2.1 Truth Table
      • 6.2.2 Set Diagrams
    • 6.3 XOR Properties
    • 6.4 Compress with XOR
      • 6.4.1 Case Study 1: XOR-linked list
      • 6.4.2 Case Study 2: XOR swap algorithm
    • 6.5 Fault Tolerance
      • 6.5.1 Case Study 3: Hamming (7,4) code
      • 6.5.2 Hamming Codes with Additional Parity
      • 6.5.3 Case Study 4: RAID
    • 6.6 Case Study 5: Feistel Cipher
    • 6.7 Case Study 6: Kademlia
      • 6.7.1 XOR Metric in Kademlia
      • 6.7.2 Routing Table in Kademlia
      • 6.7.3 Kademlia Protocol
    • 6.8 Conclusion
    • References
  • 7 Adaptation
    • 7.1 Introduction
    • 7.2 How Adaptation Works and Key Issues
      • 7.2.1 How Does Adaptation Work?
      • 7.2.2 Classification of Adaptation
    • 7.3 Case Studies
      • 7.3.1 Case Study 1: Adaption in Internet Routing System
      • 7.3.2 Case Study 2: Adaptive Self-Configuration for Sensor Networks
    • References
  • 8 Optimistic Replication
    • 8.1 Introduction
    • 8.2 Topic Description
      • 8.2.1 Design Considerations
      • 8.2.2 Techniques and Algorithms
    • 8.3 Case Studies
      • 8.3.1 Case Study 1: The Notes System
      • 8.3.2 Case Study 2: The Bayou system
    • References
  • 9 Reputation and Trust
    • 9.1 Introduction
    • 9.2 Reputation Systems: Challenges and Models
      • 9.2.1 Challenges
      • 9.2.2 Reputation Models
      • 9.2.3 Threat Model
    • 9.3 Comparison of Representative Work
    • 9.4 Case Studies
      • 9.4.1 Case Study 1: EigenTrust
      • 9.4.2 Case Study 2: HOURS
    • 9.5 Conclusion
    • References
  • 10 Moving Average
    • 10.1 Introduction
    • 10.2 Topic Description
      • 10.2.1 Simple Moving Average
      • 10.2.2 Cumulative Moving Average
      • 10.2.3 Weighted Moving Average
      • 10.2.4 Exponential Weighted Moving Average
    • 10.3 Case Study 1: Attacks Detection
      • 10.3.1 Introduction of Denial of Service Attack
      • 10.3.2 Anomalies Detection
      • 10.3.3 SYN Flooding Detection
      • 10.3.4 Other Methods
    • 10.4 Case Study 2: Machine Monitoring Technique
    • 10.5 Case Study 3: Data Cleaning in Wireless Sensor Networks
    • 10.6 Conclusion
    • References
  • 11 Machine Learning
    • 11.1 Machine Learning Concepts
      • 11.1.1 Concepts and History
    • 11.2 Introduction of Machine Learning
      • 11.2.1 A Typical Machine Learning Problem
      • 11.2.2 Machine Learning in Computer Systems Research
    • 11.3 Machine Learning Techniques
      • 11.3.1 Category
      • 11.3.2 Machine Learning Techniques and Algorithms
    • 11.4 Case Studies
      • 11.4.1 Case Study 1: Large-Scale System Problem Detection
      • 11.4.2 Case Study 2: Snitch
    • 11.5 Conclusion
    • References
  • Part III Implementation
  • 12 Asynchronous I/O
    • 12.1 Motivation
    • 12.2 I/O Multiplexing
    • 12.3 Asynchronous I/O
      • 12.3.1 Linux Asynchronous I/O
      • 12.3.2 Windows Overlapped I/O
    • 12.4 Conclusion
    • References
  • 13 Multithreading
    • 13.1 Background
    • 13.2 The Concept of Thread
    • 13.3 Hardware Support for Multithreading
      • 13.3.1 Block Multithreading
      • 13.3.2 Interleaved Multithreading
      • 13.3.3 Simultaneous Multithreading
    • 13.4 Multithreading Programming
      • 13.4.1 POSIX Threads (Pthreads)
      • 13.4.2 JAVA Threads
      • 13.4.3 WIN32 Threads
      • 13.4.4 Common APIs
    • 13.5 Multithreading Synchronization
      • 13.5.1 Multithreading Synchronization Problems
      • 13.5.2 Mutual Exclusion
      • 13.5.3 Solutions of Mutual Exclusion
      • 13.5.4 Mutual Exclusion Cases
    • 13.6 Case Studies
    • 13.7 Conclusion
    • References
  • 14 Virtualization
    • 14.1 Virtualization Definitions
    • 14.2 A Brief History of Virtualization
      • 14.2.1 The Mainframe Virtualization
      • 14.2.2 The x86 Virtualization
    • 14.3 Why Virtualization?
    • 14.4 Virtualization Capabilities
    • 14.5 The Benefits of Virtualization
      • 14.5.1 Increasing Utilization
      • 14.5.2 Reducing Cost
      • 14.5.3 Isolation
      • 14.5.4 Improving Application Development Process
      • 14.5.5 Business Continuity
      • 14.5.6 Manageability, Scalability and Flexibility
    • 14.6 Types of Virtualization
    • 14.7 Virtualization Vendors and Products
    • 14.8 Case Studies
      • 14.8.1 Case Study 1: JVM
      • 14.8.2 Case Study 2: VirtualPower
    • 14.9 Issues of Virtualization
      • 14.9.1 Issues of Adopting Virtualization
      • 14.9.2 Issues of Providing Virtualization
    • References
  • Part IV Evaluation
  • 15 Queueing Theory
    • 15.1 Introduction
      • 15.1.1 Queueing Models
    • 15.2 Fundamental Concepts
      • 15.2.1 Useful Probability Distributions
      • 15.2.2 Markov Chain
    • 15.3 Queueing Systems
      • 15.3.1 Markovian Queues
      • 15.3.2 Non-Markovian Queues
    • 15.4 Queueing Networks
    • 15.5 Case Studies
      • 15.5.1 Case Study 1: Telephone Systems
      • 15.5.2 Case Study 2: A Barber Shop
    • References
  • 16 Black Box Testing
    • 16.1 Introduction
    • 16.2 Black Box Testing Techniques
      • 16.2.1 Equivalence Partitioning
      • 16.2.2 Boundary Value Analysis
      • 16.2.3 Decision Table Testing
      • 16.2.4 Pairwise Testing
      • 16.2.5 State Transition Tables
      • 16.2.6 Use Case Testing
    • 16.3 Other Methods of Software Testing
    • 16.4 Case Studies
      • 16.4.1 Case Study 1: Web Services
      • 16.4.2 Case Study 2: MobileTest
    • References
  • 17 Goodness-of-Fit
    • 17.1 Introduction
    • 17.2 General Topics in Goodness-of-Fit
      • 17.2.1 Hypothesis Testing
      • 17.2.2 Definition
      • 17.2.3 Common Problems in Goodness-of-Fit Tests
      • 17.2.4 Quantitative Goodness-of-fit Techniques
    • 17.3 Chi-Square Test
      • 17.3.1 Meaning of the Chi-Square Test
      • 17.3.2 Definition of Chi-Square
    • 17.4 Kolmogorov-Smirnov test
      • 17.4.1 How Does K-S Test Work?
      • 17.4.2 Comparison of Chi-Square and Kolmogorov-Smirnov Tests
    • 17.5 Case Studies
      • 17.5.1 Case Study 1: Object Characteristics of Dynamic Web Content
      • 17.5.2 Case Study 2: Failures in High-Performance Computing Systems
    • References
  • Index
  • 版权

相关图书