顶部
收藏

An Introduction to Computer Simulation Methods:Applications to Physical Systems


作者:
Harvey Gould
定价:
77.80元
ISBN:
978-7-04-019955-0
版面字数:
1330.000千字
开本:
16开
全书页数:
796页
装帧形式:
平装
重点项目:
暂无
出版时间:
2006-09-30
物料号:
19955-00
读者对象:
高等教育
一级分类:
物理学与天文学类
二级分类:
物理学/应用物理学/天文学专业课程
三级分类:
计算物理

本书是在美国大学使用很广泛的一本经典的,讲解如何使用计算机进行物理学数字模拟的教材,该书为刚刚出版的第三版。该书不是简单的物理学研究中的数学方法的介绍,而更注重使用计算机模拟物理学问题中帮助学生更深刻的理解物理学,帮助学生在学习中了解和掌握使用计算机做物理学研究的一些基本手段,并学会如何根据具体的物理问题选择相应的研究方法。此外,还通过对具体的例子的讲解也为学习物理学的学生介绍了物理学广阔的应用天地。

同前两版版相比,第三版中的程序全部使用Java语言来编写,具有非常好的平台兼容性,实用性强。由于该书是通过计算机模拟讲解物理,因此对计算机编程的基础要求不高,读者都能在课程学习的过程中学习和掌握编程的工具及方法。除覆盖物理学的基本内容,例如光学、电动力学、相对论、刚体运动、量子力学等,该教材还涉及了物理学的一些比较前沿的领域,例如随机行走、混沌、分形、多粒子体系、复杂理论等,开阔了读者使用教材中介绍的方法的视野。

本书可作为高等学校物理类专业或其它理工类专业计算物理课程的教材或参考书,对于相关学科的研究人员也是一本有用的参考书。

  • 1 Introduction
    • 1.1 ImportanceofComputersinPhysics
    • 1.2 TheImportanceofComputerSimulation
    • 1.3 ProgrammingLanguages
    • 1.4 Object-OrientedTechniques
    • 1.5 HowtoUsethisBook
    • AppendixIA:LaboratoryReports
  • 2 ToolsforDoingSimulations
    • 2.1 Introduction
    • 2.2 SimulatingFreeFall
    • 2.3 GettingStartedwithObject-OrientedProgramming
    • 2.4 Inheritance
    • 2.5 TheOpenSourcePhysicsLibrary
    • 2.6 AnimationandSimulation
    • 2.7 Model-View-Controller
    • Appendix2A:ComplexNumbers
  • 3 SimulatingParticleMotion
    • 3.1 ModifiedEulerAlgorithms
    • 3.2 Interfaces
    • 3.3 Drawing
    • 3.4 SpecifyingtheStateofaSystemUsingArrays
    • 3.5 TheODEInterface
    • 3.6 TheODESolverInterface
    • 3.7 EffectsofDragResistance
    • 3.8 Two-DimensionalTrajectories
    • 3.9 DecayProcesses
  • *3.10 VisualizingThree-DimensionalMotion
    • 3.11 LevelsofSimulation
    • Appendix3A:NumericalIntegrationofNewton'sEquationofMotion
  • 4 OscillatorySystems
    • 4.1 SimpleHarmonicMotion
    • 4.2 TheMotionofaPendulum
    • 4.3 DampedHarmonicOscillator
    • 4.4 ResponsetoExternalForces
    • 4.5 ElectricalCircuitOscillations
    • 4.6 AccuracyandStability
    • 4.7 Projects
  • 5 Few-BodyProblems:TheMotionofthePlanets
    • 5.1 PlanetaryMotion
    • 5.2 TheEquationsofMotion
    • 5.3 CircularandEllipticalOrbits
    • 5.4 AstronomicalUnits
    • 5.5 Log-LogandSemilogPlots
    • 5.6 SimulationoftheOrbit
    • 5.7 ImpulsiveForces
    • 5.8 VelocitySpace
    • 5.9 AMini-SolarSystem
    • 5.10 Two-BodyScattering
    • 5.11 Three-BodyProblems
    • 5.12 Projects
  • 6 TheChaoticMotionofDynamicalSystems
    • 6.1 Introduction
    • 6.2 ASimpleOne-DimensionalMap
    • 6.3 PeriodDoubling
    • 6.4 UniversalPropertiesandSelf-Similarity
    • 6.5 MeasuringChaos
  • *6.6 ControllingChaos
    • 6.7 Higher-DimensionalModels
    • 6.8 ForcedDampedPendulum
  • *6.9 HamiltonianChaos
    • 6.10 Perspective
    • 6.11 Projects
    • Appendix6A:StabilityoftheFixedPointsoftheLogisticMap
    • Appendix6B:FindingtheRootsofaFunction
  • 7 RandomProcesses
    • 7.1 OrdertoDisorder
    • 7.2 RandomWalks
    • 7.3 ModifiedRandomWalks
    • 7.4 ThePoissonDistributionandNuclearDecay
    • 7.5 ProblemsinProbability
    • 7.6 MethodofLeastSquares
    • 7.7 ApplicationstoPolymers
    • 7.8 Diffusion-ControlledChemicalReactions
    • 7.9 RandomNumberSequences
    • 7.10 VariationalMethods
    • 7.11 Projects
    • Appendix7A:RandomWalksandtheDiffusionEquation
  • 8 TeDynamicsofMany-ParticleSystems
    • 8.1 Introduction
    • 8.2 TheIntermolecularPotential
    • 8.3 Units
    • 8.4 TheNumericalAlgorithm
    • 8.5 PeriodicBoundaryConditions
    • 8.6 AMolecularDynamicsProgram
    • 8.7 ThermodynamicQuantities
    • 8.8 RadialDistributionFunction
    • 8.9 HardDisks
    • 8.10 DynamicalProperties
    • 8.11 Extensions
    • 8.12 Projects
    • Appendix8A:ReadingandSavingConfigurations
  • 9 NormalModesandWaves
    • 9.1 CoupledOscillatorsandNormalModes
    • 9.2 NumericalSolutions
    • 9.3 FourierSeries
    • 9.4 Two-DimensionalFounerSeries
    • 9.5 FourierIntegrals
    • 9.6 PowerSpectrum
    • 9.7 WaveMotion
    • 9.8 Interference
    • 9.9 FraunhoferDiffraction
    • 9.10 FresnelDiffraction
    • Appendix9A:ComplexFourierSeries
    • Appendix9B:FastFourierTransform
    • Appendix9C:PlottingScalarFields
  • 10 Electrodynamics
    • 10.1 StaticCharges
    • 10.2 ElectricFields
    • 10.3 ElectricFieldLines
    • 10.4 ElectricPotential
    • 10.5 NumericalSolutionsofBoundaryValueProblems
    • 10.6 RandomWalkSolutionofLaplace'sEquation
  • *10.7 FieldsDuetoMovingCharges
  • *10.8 Maxwell'sEquations
    • 10.9 Projects
    • Appendix10A:PlottingVectorFields
  • 11 NumericalandMonteCarloMethods
    • 11.1 NumericalIntegrationMethodsinOneDimension
    • 11.2 SimpleMonteCarloEvaluationofIntegrals
    • 11.3 MultidimensionalIntegrals
    • 11.4 MonteCarloErrorAnalysis
    • 11.5 NonuniformProbabilityDistributions
    • 11.6 ImportanceSampling
    • 11.7 MetropolisAlgorithm
  • *11.8 NeutronTransport
    • Appendix11A:ErrorEstimatesforNumericalIntegration
    • Appendix11B:TheStandardDeviationoftheMean
    • Appendix11C:TheAcceptance-RejectionMethod
    • Appendix11D:PolynomialsandInterpolation
  • 12 Percolation
    • 12.1 Introduction
    • 12.2 ThePercolationThreshold
    • 12.3 FindingClusters
    • 12.4 CriticalExponentsandFiniteSizeScaling
    • 12.5 TheRenormalizationGroup
    • 12.6 Projects
  • 13 FractalsandKineticGrowthModels
    • 13.1 TheFractalDimension
    • 13.2 RegularFractals
    • 13.3 KineticGrowthProcesses
    • 13.4 FractalsandChaos
    • 13.5 ManyDimensions
    • 13.6 Projects
  • 14 ComplexSystems
    • 14.1 CellularAutomata
    • 14.2 Self-OrganizedCriticalPhenomena
    • 14.3 TheHopfieldModelandNeuralNetworks
    • 14.4 GrowingNetworks
    • 14.5 GeneticAlgorithms
    • 14.6 LatticeGasModelsofFluidFlow
    • 14.7 OverviewandProjects
  • 15 MonteCarloSimulationsofThermalSystems
    • 15.1 Introduction
    • 15.2 TheMicrocanonicalEnsemble
    • 15.3 TheDemonAlgorithm
    • 15.4 TheDemonasaThermometer
    • 15.5 TheIsingModel
    • 15.6 TheMetropolisAlgorithm
    • 15.7 SimulationoftheIsingModel
    • 15.8 TheIsingPhaseTransition
    • 15.9 OtherApplicationsoftheIsingModel
    • 15.10 SimulationofClassicalFluids
    • 15.11 OptimizedMonteCarloDataAnalysis
  • *15.12 OtherEnsembles
    • 15.13 MoreApplications
    • 15.14 Projects
    • Appendix15A:RelationoftheMeanDemonEnergytotheTemperature
    • Appendix1513:FluctuationsintheCanonicalEnsemble
    • Appendix15C:ExactEnumerationofthe2x2IsingModel
  • 16 QuantumSystems
    • 16.1 Introduction
    • 16.2 ReviewofQuantumTheory
    • 16.3 BoundStateSolutions
    • 16.4 TimeDevelopmentofEigenstateSuperpositions
    • 16.5 TheTime-DependentSchr6dingerEquation
    • 16.6 FourierTransformationsandMomentumSpace
    • 16.7 VariationalMethods
    • 16.8 RandomWalkSolutionsoftheSchr6dingerEquation
    • 16.9 DiffusionQuantumMonteCarlo
    • 16.10 PathIntegralQuantumMonteCarlo
    • 16.11 Projects
    • Appendix16A:VisualizingComplexFunctions
  • 17 VisualizationandRigidBodyDynamics
    • 17.1 Two-DimensionalTransformations
    • 17.2 Three-DimensionalTransformations
    • 17.3 TheThree-DimensionalOpenSourcePhysicsLibrary
    • 17.4 DynamicsofaRigidBody
    • 17.5 QuaternionArithmetic
    • 17.6 QuaternionEquationsofMotion
    • 17.7 RigidBodyModel
    • 17.8 MotionofaSpinningTop
    • 17.9 Projects
    • Appendix17A:MatrixTransformations
    • Appendix17B:Conversions
    • 18 SeeinginSpecialandGeneralRelativity
    • 18.1 SpecialRelativity
    • 18.2 GeneralRelativity
    • 18.3 DynamicsinPolarCoordinates
    • 18.4 BlackHolesandSchwarzschildCoordinates
    • 18.5 ParticleandLightTrajectories
    • 18.6 Seeing
    • 18.7 GeneralRelativisticDynamics
  • *18.8 TheKerrMetric
    • 18.9 Projects
  • 19 Epilogue:TheUnityofPhysics
    • 19.1 TheUnityofPhysics
    • 19.2 SpiralGalaxies
    • 19.3 Numbers,PrettyPictures,andInsight
    • 19.4 ConstrainedDynamics
    • 19.5 WhatareComputersDoingtophysics?
  • Index