登录
注册
书目下载
联系我们
移动端
扫码关注-登录移动端
帮助中心
高等教育出版社产品信息检索系统
图书产品
数字化产品
期刊产品
会议信息
电子书
线上书展
顶部
首页
图书产品
量子计算与量子信息(影印版)
收藏
量子计算与量子信息(影印版)
作者:
(美)Michael A. Nielsen, Isaac
定价:
59.00元
ISBN:
978-7-04-013502-2
版面字数:
840.000千字
开本:
16开
全书页数:
676页
装帧形式:
平装
重点项目:
暂无
出版时间:
2003-08-20
物料号:
13502-00
读者对象:
高等教育
一级分类:
计算机/教育技术类
二级分类:
计算机科学与技术专业课程
购买:
册数:
-
+
我想申请样书
图书详情
|
图书目录
暂无
Preface
Acknowledgements
Nomenclature and notation
Part Ⅰ Fundamental concepts
1 Introduction and overview
1.1 Global perspectives
1.1.1 History of quantum computation and quantum information
1.1.2 Future directions
1.2 Quantum bits
1.2.1 Multiple qubits
1.3 Quantum computation
1.3.1 Single qubit gates
1.3.2 Multiple qubit gates
1.3.3 Measurements in bases other than the computational basis
1.3.4 Quantum circuits
1.3.5 Qubit copying circuit?
1.3.6 Example: Bell states
1.3.7 Example: quantum teleportation
1.4 Quantum algorithms
1.4.1 Classical computations on a quantum computer
1.4.2 Quantum parallelism
1.4.3 Deutsch's algorithm
1.4.4 The Deutsch-jozsa algorithm
1.4.5 Quantum algorithms summarized
1.5 Experimental quantum information processing
1.5.1 The Stern-Gerlach experiment
1.5.2 Prospects for practical quantum information processing
1.6 Quantum information
1.6.1 Quantum information theory: example problems
1.6.2 Quantum information in a wider context
2 Introduction to quantum mechanics
2.1 Linear algebra
2.1.1 Bases and linear independence
2.1.2 Linear operators and matrices
2.1.3 The Pauli matrices
2.1.4 Inner products
2.1.5 Eigenvectors and eigenvalues
2.1.6 Adjoints and Hermitian operators
2.1.7 Tensor products
2.1.8 Operator functions
2.1.9 The commutator and anti-commutator
2.1.10 The polar and singular value decompositions
2.2 The postulates of quantum mechanics
2.2.1 State space
2.2.2 Evolution
2.2.3 Quantum measurement
2.2.4 Distinguishing quantum states
2.2.5 Projective measurements
2.2.6 POVM measurements
2.2.7 Phase
2.2.8 Composite systems
2.2.9 Qntum mechanics: a global view
2.3 Application: superdense coding
2.4 The density operator
2.4.1 Ensembles of quantum states
2.4.2 General properties of the density operator
2.4.3 The reduced density operator
2.5 The Schmidt decomposition and purifications
2.6 EPR and the Bell inequality
3 Introduction to computer science
3.1 Models for computation
3.1.1 Turing machines
3.1.2 Circuits
3.2 The analysis of computational problems
3.2.1 How to quantify computational resources
3.2.2 Computational complexity
3.2.3 Decision problems and the complexity classes P and NP
3.2.4 A ptetnora of complexity classes
3.2.5 Energy and computation
3.3 Perspectives on computer science
PartⅡ Quantum computation
4 Quantum circuits
4.1 Quantum algorithms
4.2 Single qubit operations
4.3 Controlled operations
4.4 Measurement
4.5 Universal quantum gates
4.5.1 Two-level unitary gates are universal
4.5.2 Single qubit and CNOT gates are universal
4.5.3 A discrete set of universal operations
4.5.4 Approximating arbitrary unitary gates is generically hard
4.5.5Quantum computational complexity
4.6 Summary of the quantum circuit model of computation
4.7 Simulation of quantum systems
4.7.1 Simulation in action
4.7.2 The quantum simulation algorithm
4.7.3 An illustrative example
4.7.4 Perspectives on quantum simulation
5 The quantum Fourier transform and its applications
5.1 The quantum Fourier transform
5.2 Phase estimation
5.2.1 Performance and requirements
5.3 Applications: order-finding and factoring
5.3.1 Application: order-finding
5.3.2 Application: factoring
5.4 General applications of the quantum Fourier transform
5.4.1 Period-finding
5.4.2 Discrete logarithms
5.4.3 The hidden subgroup problem
5.4.4 Other quantum algorithms?
6 Quantum search algorithms
6.1 The quantum search algorithm
6.1.1 The oracle
6.1.2 The procedure
6.1.3 Geometric visualization
6.1.4 Performance
6.2 Quantum search as a quantum simulation
6.3 Quantum counting
6.4 Speeding up the solution of NP-complete problems
6.5 Quantum search of an unstructured database
6.6 Optimality of the search algorithm
6.7 Black box algorithm limits
7 Quantum computers: physical realization
7.1 Guiding principles
7.2 Conditions for quantum computation
7.2.1 Representation of quantum information
7.2.2 Performance of unitary transformations
7.2.3 Preparation of fiducial initial states
7.2.4 Measurement of output result
7.3 Harmonic oscillator quantum computer
7.3.1 Physical apparatus
7.3.2 The Hamiltonian
7.3.3 Quantum computation
7.3.4 Drawbacks
7.4 Optical photon quantum computer
7.4.1 Physical apparatus
7.4.2 Quantum computation
7.4.3 Drawbacks
7.5 Optical cavity quantum electrodynamics
7.5.1 Physical apparatus
7.5.2 The Hamiltonian
7.5.3 Single-photon single-atom absorption and refraction
7.5.4 Quantum computation
7.6 Ion traps
7.6.1 Physical apparatus
7.6.2 The Hamiltonian
7.6.3 Quantum computation
7.6.4 Experiment
7.7 Nuclear magnetic resonance
7.7.1 Physical apparatus
7.7.2 The Hamiltonian
7.7.3 Quantum computation
7.7.4 Experiment
7.8 Other implementation schemes
Part Ⅲ Quantum information
8 Quantum noise and quantum operations
8.1 Classical noise and Markov processes
8.2 Quantum operations
8.2.1 Overview
8.2.2 Environments and quantum operations
8.2.3 Operator-sum representation
8.2.4 Axiomatic approach to quantum operations
8.3 Examples of quantum noise and quantum operations
8.3.1 Trace and partial trace
8.3.2 Geometric picture of single qubit quantum operations
8.3.3 Bit flip and phase flip channels
8.3.4 Depolarizing channel
8.3.5 Amplitude damping
8.3.6 Phase damping
8.4 Applications of quantum operations
8.4.1 Master equations
8.4.2 Quantum process tomography
8.5 Limitations of the quantum operations formalism
9 Distance measures for quantum information
9.1 Distance measures for classical information
9.2 How close are two quantum states?
9.2.1 Trace distance
9.2.2 Fidelity
9.2.3 Relationships between distance measures
9.3 How well does a quantum channel preserve information?
10 Quantum error-correction
10.1 Introduction
10.1.1 The three qubit bit flip code
10.1.2 Three qubit phase flip code
10.2 The Shor code
10.3 Theory of quantum error-correction
10.3.1 Discretization of the errors
10.3.2 Independent error models
10.3.3 Degenerate codes
10.3.4 The quantum Hamming bound
10.4 Constructing quantum codes
10.4.1 Classical linear codes
10.4.2 Calderbank-Shor-Steane codes
10.5 Stabilizer codes
10.5.1 The stabilizer formalism
10.5.2 Unitary gates and the stabilizer formalism
10.5.3 Measurement in the stabilizer formalism
10.5.4 The Gottesman-Knill theorem
10.5.5 Stabilizer code constructions
10.5.6 Examples
10.5.7 Standard form for a stabilizer code
10.5.8 Quantum circuits for encoding, decoding, and correction
10.6 Fault-tolerant quantum computation
10.6.1 Fault-tolerance: the big picture
10.6.2 Fault-tolerant quantum logic
10.6.3 Fault-tolerant measurement
10.6.4 Elements of resilient quantum computation
11 Entropy and information
11.1 Shannon entropy
11.2 Basic properties of entropy
11.2.1 The binary entropy
11.2.2 The relative entropy
11.2.3 Conditional entropy and mutual information
11.2.4 The data processing inequality
11.3 Von Neumann entropy
11.3.1 Quantum relative entropy
11.3.2 Basic properties of entropy
11.3.3 Measurements and entropy
11.3.5 Concavity of the entropy
11.3.6 The entropy of a mixture of quantum states
11.4 Strong subadditivity
11.4.1 Proof of strong subadditivity
11.4.2 Strong subadditivity: elementary applications
12 Ouantum information theory
12.1 Distinguishing quantum states and the accessible tntormanon
12.1.1 The Holevo bound
12.1.2 Example applications of the Holevo bound
12.2 Data compression
12.2.1 Shannon’s noiseless channel coding theorem
12.2.2 Schumacher’s quantum noiseless channel coding theorem
12.3 Classical information over noisy quantum channels
12.3.1 Communication over noisy classical channels
12.3.2 Communication over noisy quantum channels
12.4 Quantum information over noisy quantum channels
12.4.1 Entropy exchange and the quantum Fano inequality
12.4.2 The quantum data processing inequality
12.4.3 Quantum Singleton bound
12.4.4 Quantum error-correction, refrigeration and Maxwell’s demon
12.5 Entanglement as a physical resource
12.5.1 Transforming bi-partite pure state entanglement
12.5.2 Entanglement distillation and dilution
12.5.3 Entanglement distillation and quantum error-correction
12.6 Quantum cryptography
12.6.1 Private key cryptography
12.6.2 Privacy amplification and information reconciliation
12.6.3 Quantum key distribution
12.6.4 Privacy and coherent information
12.6.5 The security of quantum key distribution
Appendices
Appendix 1: Notes on basic probability theory
Appendix 2: Group theory
A2.1 Basic definitions
A2.1.1 Generators
A2.1.2 Cyclic groups
A2.1.3 Cosets
A2.2 Representations
A2.2.1 Equivalence and reducibility
A2.2.2 Orthogonality
A2.2.3 The regular representation
A2.3 Fourier transforms
Appendix 3:The Solovay-Kitaev theorem
Appendix4:Number theory
A4.1 Fundamentals
A4.2 Modular arithmetic and Euclid’s algorithm
A4.3 Reduction of factoring to order-finding
A4.4 Continued fractions
Appendix 5:Public key cryptography and the RSA cryptosystem
Appendix 6:Proof of Lieb’s theorem
Bibliography
Index
相关图书
面向对象分析与设计导论——使用UML和统一过程(影印版)
Stephen R. Schach
¥39.00
收藏
CMMI精萃——实用集成化过程改进导论(第二版 影印版)
[美] Dennis M. Ahern, Aaron Cl
¥29.00
收藏
算法导论(第二版)(影印版)
THOMAS H.CORMEN,CHARLES E LEIS
¥68.00
收藏
数据挖掘——概念与技术(影印版)
JIAWEI HAN、MICHELINE KAMBER
¥35.00
收藏
算法学——计算精髓(第三版 影印版)
David Harel,Yishai Feldman
¥38.00
收藏
无线与移动系统导论(影印版)
[美] Dharma Prakash Agrawal, Q
¥36.00
收藏
技术写作——过程与产品(第四版 影印版)
[美]Sharon J. Gerson,Steven M.
¥45.00
收藏
软件需求管理——统一化方法(影印版)
DEAN LEFFINGWELL、DON WIDRIG
¥36.00
收藏
计算方法简明教程
王能超
¥28.00
收藏
分布计算系统
徐高潮等
¥33.80
收藏
系统分析与设计简明教程(影印版)
[美] Joseph S. Valacich, Joey
¥35.00
收藏
移动通信(第二版 影印版)
[德] Jochen Schiller
¥31.00
收藏
移动商务与无线计算系统(影印版)
[英] Geoffrey Elliott, Nigel P
¥43.00
收藏
计算方法——算法设计及其MATLAB实现
王能超
¥17.90
收藏
算法学——计算精髓(第三版 翻译版)
霍红卫
¥39.00
收藏
选择收货地址
收货人
地址
联系方式
使用新地址
使用新地址
所在地区
请选择
详细地址
收货人
联系电话
设为默认
设为默认收货地址