登录
注册
书目下载
联系我们
移动端
扫码关注-登录移动端
帮助中心
高等教育出版社产品信息检索系统
图书产品
数字化产品
期刊产品
会议信息
电子书
线上书展
顶部
首页
图书产品
经典和现代回归分析及其应用(第2版)(影印版)
收藏
经典和现代回归分析及其应用(第2版)(影印版)
作者:
Raymond H.Myers
定价:
59.00元
ISBN:
978-7-04-016323-0
版面字数:
700.000千字
开本:
16开
全书页数:
488页
装帧形式:
平装
重点项目:
暂无
出版时间:
2005-05-10
物料号:
16323-00
读者对象:
高等教育
一级分类:
数学与统计学类
二级分类:
统计学专业课
三级分类:
回归分析
购买:
册数:
-
+
我想申请样书
图书详情
|
图书目录
暂无
CHAPTER 1 INTRODUCTION: REGRESSION ANALYSIS
1.1 Regression models
1.2 Formal uses of regression analysis 1.3 The data base References
CHAPTER 2 THE SIMPLE LINEAR REGRESSION MODEL
2.1 The model description
2.2 Assumptions and interpretation of model parameters
2.3 Least squares formulation
2.4 Maximum likelihood estimation
2.5 Partioning total variability
2.6 Tests of hypothesis on slope and intercept
2.7 Simple regression through the origin (Fixed intercept)
2.8 Quality of fitted model
2.9 Confidence intervals on mean response and prediction intervals
2.10 Simultaneous inference in simple linear regression
2.11 A complete annotated computer printout
2.12 A look at residuals
2.13 Both x and y random
Exercises
References
CHAPTER 3 THE MULTIPLE LINEAR REGRESSION MODEL
3.1 Model description and assumptions
3.2 The general linear model and the least squares procedure
3.3 Properties of least squares estimators under ideal conditions
3.4 Hypothesis testing in multiple linear regression
3.5 Confidence intervals and prediction intervals in multiple regressions
3.6 Data with repeated observations
3.7 Simultaneous inference in multiple regression
3.8 Multicollinearity in multiple regression data
3.9 Quality fit, quality prediction, and the HAT matrix
3.10 Categorical or indicator variables (Regression models and ANOVA models)
Exercises
References
CHAPTER 4 CRITERIA FOR CHOICE OF BEST MODEL
4.1 Standard criteria for comparing models
4.2 Cross validation for model selection and determination of model performance
4.3 Conceptual predictive criteria (The Cp=statistic)
4.4 Sequential variable selection procedures
4.5 Further comments and all possible regressions
Exercises
References
CHAPTER 5 ANALYSIS OF RESIDUALS
5.1 Information retrieved from residuals
5.2 Plotting of residuals
5.3 Studentized residuals
5.4 Relation to standardized PRESS residuals
5.5 Detection of outliers
5.6 Diagnostic plots
5.7 Normal residual plots
5.8 Further comments on analysis of residuals
Exercises
References
CHAPTER 6 INFLUENCE DIAGNOSTICS
6.1 Sources of influence
6.2 Diagnostics: Residuals and the HAT matrix
6.3 Diagnostics that determine extent of influence
6.4 Influence on performance
6.5 What do we do with high influence points?
Exercises
References
CHAPTER 7 NONSTANDARD CONDITIONS. VIOLATIONS OF ASSUMPTIONS, AND TRANSFORMATIONS
7.1 Heterogeneous variance: Weighted least squares
7.2 Problem with correlated errors (Autocorrelation)
7.3 Transformations to improve fit and prediction
7.4 Regression with a binary response
7.5 Further developments in models with a discrete response (Poisson regression)
7.6 Generalized linear models
7.7 Failure of normality assumption: Presence of outliers
7.8 Measurement errors in the regressor variables
Exercises
References
CHAPTER 8 DETECTING AND COMBATING MULTICOLLINEARITY
8.1 Multicollinearity diagnostics
8.2 Variance proportions
8.3 Further topics concerning multicollinearity
8.4 Alternatives to least squares in cases of multicollinearity
Exercises
References
CHAPTER 9 NONLINEAR REGRESSION
9.1 Nonlinear least squares
9.2 Properties of the least squares estimators
9.3 The Gauss-Newton procedure for finding estimates
9.4 Other modifications of the Gauss-Newton procedure
9.5 Some special classes of nonlinear models
9.6 Further considerations in nonlinear regression
9.7 Why not transform data to linearize?
Exercises
References
APPENDIX A SOME SPECIAL CONCEPTS IN MATRIX ALGEBRA
A.1 Solutions to simultaneous linear equations
A.2 Quadratic form
A.3 Eigenvalues and eigenvectors
A.4 The inverses of a partitioned matrix
A.5 Sherman-Morrison-Woodbury theorem References
APPENDIX B SOME SPECIAL MANIPULATIONS
B.1 Unbiasedness of the residual mean square
B.2 Expected value of residual sum of squares and mean square for an underspecified model
B.3 The maximum likelihood estimator
B.4 Development of the PRESS statistic
B.5 Computation of s●
B.6 Dominance of a residual by the corresponding model error
B.7 Computation of influence diagnostics
B.8 Maximum likelihood estimator in the nonlinear model
B.9 Taylor series
B.10 Development of the C,-statistic References
APPENDIX C STATISTICAL TABLES
INDEX
相关图书
实用回归分析(第二版)
何晓群 闵素芹
¥29.50
收藏
线性统计模型——线性回归与方差分析
王松桂 陈敏 陈立萍
¥16.40
收藏
选择收货地址
收货人
地址
联系方式
使用新地址
使用新地址
所在地区
请选择
详细地址
收货人
联系电话
设为默认
设为默认收货地址